
Chameleon Cloud Python API
Release 0.1

Nick Timkovich

Feb 15, 2024

MODULES

1 Installation 3

2 Authentication 5

3 Basic usage 7

4 Indices and tables 39

Python Module Index 41

Index 43

i

ii

Chameleon Cloud Python API, Release 0.1

python-chi is a Python library that can help you interact with the Chameleon testbed to improve your workflows with
automation. It additionally pairs well with environments like Jupyter Notebooks.

MODULES 1

https://www.chameleoncloud.org

Chameleon Cloud Python API, Release 0.1

2 MODULES

CHAPTER

ONE

INSTALLATION

pip install python-chi

3

https://pypi.org/project/python-chi/

Chameleon Cloud Python API, Release 0.1

4 Chapter 1. Installation

CHAPTER

TWO

AUTHENTICATION

Environment variables are the primary authentication method. Please refer to the documentation on OpenRC scripts to
learn more about how to download and source your authentication credentials for the CLI; the same instructions apply
for using the Python interface.

Depending on the contents of your OpenRC script, you might need to include this line in your python script:

chi.set('project_domain_name', 'chameleon')

5

https://chameleoncloud.readthedocs.io/en/latest/technical/cli.html#the-openstack-rc-script

Chameleon Cloud Python API, Release 0.1

6 Chapter 2. Authentication

CHAPTER

THREE

BASIC USAGE

The following example shows how to make a reservation for a bare metal server. For more details about the modules
available refer to their respective pages.

import chi

Select your project
chi.set('project_name', 'CH-XXXXXX')
Select your site
chi.use_site('CHI@UC')

Make a reservation ...
reservations = []
... for one node of type "compute_skylake"
chi.lease.add_node_reservation(

reservations, node_type='compute_skylake', count=1)
... and one Floating IP
chi.lease.add_fip_reservation(count=1)
... for one day.
start_date, end_date = chi.lease.lease_duration(days=1)
chi.lease.create_lease(

lease_name, reservations, start_date=start_date, end_date=end_date)

3.1 chi

The chi module exposes a global context object and helpers for generating clients for interfacing with the various
Chameleon services.

chi.blazar(session=None)→ BlazarClient
Get a preconfigured client for Blazar, the reservation service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Blazar client.

chi.cinder(session=None)→ CinderClient
Get a preconfigured client for Cinder, the persistent volume service.

7

Chameleon Cloud Python API, Release 0.1

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Cinder client.

chi.connection(session=None)→ Connection
Get connection context for OpenStack SDK.

The returned openstack.connection.Connection object has several proxy modules attached for each service
provided by the cloud.

Note: For the most part, it is more straightforward to use clients specific to the service you are targeting.
However, some of the proxy modules are useful for operations that span a few services, such as assigning a
Floating IP to a server instance.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new connection proxy.

chi.get(key)
Get a context parameter by name.

Parameters
key (str) – the parameter name.

Returns
the parameter value.

Return type
any

Raises
cfg.NoSuchOptError – if the parameter is not supported.

chi.glance(session=None)→ GlanceClient
Get a preconfigured client for Glance, the image service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Glance client.

chi.gnocchi(session=None)→ GnocchiClient
Get a preconfigured client for Gnocchi, the metrics service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Gnocchi client.

8 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

chi.ironic(session=None)→ IronicClient
Get a preconfigured client for Ironic, the bare metal service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Ironic client.

chi.keystone(session=None)→ KeystoneClient
Get a preconfigured client for Keystone, the authentication service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Keystone client.

chi.manila(session=None)→ ManilaClient
Get a preconfigured client for Manila, the share service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Manila client.

chi.neutron(session=None)→ NeutronClient
Get a preconfigured client for Neutron, the networking service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Neutron client.

chi.nova(session=None)→ NovaClient
Get a preconfigured client for Nova, the compute service.

Parameters
session (Session) – An authentication session object. By default a new session is created via
chi.session().

Returns
A new Nova client.

chi.params()

List all parameters currently set on the context.

Returns
a list of parameter names.

Return type
List[str]

3.1. chi 9

https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

chi.reset()

Reset the context, removing all overrides and defaults.

The auth_type parameter will be defaulted to the value of the OS_AUTH_TYPE environment variable, falling
back to “v3token” if not defined.

All context parameters will revert to the default values inferred from environment variables.

chi.session()

Get a Keystone Session object suitable for authenticating a client.

Returns
the authentication session object.

Return type
keystoneauth1.session.Session

chi.set(key, value)
Set a context parameter by name.

Parameters

• key (str) – the parameter name.

• value (any) – the parameter value.

Raises
cfg.NoSuchOptError – if the parameter is not supported.

chi.use_site(site_name)
Configure the global request context to target a particular CHI site.

Targeting a site will mean that leases, instance launch requests, and any other API calls will be sent to that site.
By default, no site is selected, and one must be explicitly chosen.

chi.use_site("CHI@UC")

Changing the site will affect future calls the client makes, implicitly. Therefore something like this is possible:

chi.use_site("CHI@UC")
chi.lease.create_lease("my-uc-lease", reservations)
chi.use_site("CHI@TACC")
chi.lease.create_lease("my-tacc-lease", reservations)

Parameters
site_name (str) – The name of the site, e.g., “CHI@UC”.

3.2 chi.lease

The chi.lease module exposes both a functional interface and an object-oriented interface for interacting with re-
source leases.

10 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
mailto:CHI@UC

Chameleon Cloud Python API, Release 0.1

3.2.1 Functional interface

chi.lease.add_device_reservation(reservation_list, count=1, machine_name=None, device_model=None,
device_name=None)

Add an IoT/edge device reservation to a reservation list.

Parameters

• reservation_list (list[dict]) – The list of reservations to add to.

• count (int) – The number of devices to request.

• machine_name (str) – The device machine name to reserve. This should match a “ma-
chine_name” property of the devices registered in Blazar. This is the easiest way to reserve
a particular device type, e.g. “raspberrypi4-64”.

• device_model (str) – The model of device to reserve. This should match a “model” prop-
erty of the devices registered in Blazar.

• device_name (str) – The name of a specific device to reserve. If this is provided in con-
junction with count or other constraints, an error will be raised, as there is only 1 possible
device that can match this criteria, because devices have unique names.

Raises
ValueError – If device_name is provided, but count is greater than 1, or some other constraint
is present.

chi.lease.add_fip_reservation(reservation_list, count=1)
Add a floating IP reservation to a reservation list.

Parameters

• reservation_list (list[dict]) – The list of reservations to add to. The list will be
extended in-place.

• count (int) – The number of floating IPs to reserve.

chi.lease.add_network_reservation(reservation_list, network_name, of_controller_ip=None,
of_controller_port=None, vswitch_name=None,
resource_properties=None, physical_network='physnet1')

Add a network reservation to a reservation list.

Parameters

• reservation_list (list[dict]) – The list of reservations to add to. The list will be
extended in-place.

• network_name (str) – The name of the network to create when the reservation starts.

• of_controller_ip (str) – The OpenFlow controller IP, if the network should be con-
trolled by an external controller.

• of_controller_port (int) – The OpenFlow controller port.

• vswitch_name (str) – The name of the virtual switch associated with this network. See
the virtual forwarding context documentation for more details.

• resource_properties (list) – A list of resource property constraints. These take the
form [<operation>, <search_key>, <search_value>]

• physical_network (str) – The physical provider network to reserve from. This only needs
to be changed if you are reserving a stitchable network. (Default “physnet1”).

3.2. chi.lease 11

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://chameleoncloud.readthedocs.io/en/latest/technical/networks/networks_sdn.html#corsa-dp2000-virtual-forwarding-contexts-network-layout-and-advanced-features
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://chameleoncloud.readthedocs.io/en/latest/technical/networks/networks_stitching.html

Chameleon Cloud Python API, Release 0.1

chi.lease.add_node_reservation(reservation_list, count=1, resource_properties=None, node_type=None,
architecture=None)

Add a node reservation to a reservation list.

Parameters

• reservation_list (list[dict]) – The list of reservations to add to. The list will be
extended in-place.

• count (int) – The number of nodes of the given type to request. (Default 1).

• resource_properties (list) – A list of resource property constraints. These take the
form [<operation>, <search_key>, <search_value>], e.g.:

["==", "$node_type", "some-node-type"]: filter the reservation to␣
→˓only
nodes with a `node_type` matching "some-node-type".

[">", "$architecture.smt_size", 40]: filter to nodes having more␣
→˓than 40
(hyperthread) cores.

• node_type (str) – The node type to request. If None, the reservation will not target any
particular node type. If resource_properties is defined, the node type constraint is added to
the existing property constraints.

• architecture (str) – The node architecture to request. If resource_properties is defined,
the architecture constraint is added to the existing property constraints.

chi.lease.create_lease(lease_name, reservations=[], start_date=None, end_date=None)
Create a new lease with some requested reservations.

Parameters

• lease_name (str) – The name to give the new lease.

• reservations (list[dict]) – The reservations to request with the lease.

• start_date (datetime) – The start date of the lease. (Defaults to now.)

• end_date (datetime) – The end date of the lease. (Defaults to 1 day from the lease start
date.)

Returns
The created lease representation.

chi.lease.delete_lease(ref)
Delete the lease.

Parameters
ref (str) – The name or ID of the lease.

chi.lease.get_device_reservation(lease_ref , count=None, machine_name=None, device_model=None,
device_name=None)

Retrieve a reservation ID for a device reservation.

The reservation ID is useful to have when requesting containers.

Parameters

• lease_ref (str) – The ID or name of the lease.

• count (int) – An optional count of devices the desired reservation was made for. Use this
if you have multiple reservations under a lease.

12 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int

Chameleon Cloud Python API, Release 0.1

• machine_name (str) – An optional device machine name the desired reservation was made
for. Use this if you have multiple reservations under a lease.

• device_model (str) – An optional device model the desired reservation was made for. Use
this if you have multiple reservations under a lease.

• device_name (str) – An optional device name the desired reservation was made for. Use
this if you have multiple reservations under a lease.

Returns
The ID of the reservation, if found.

Raises
ValueError – If no reservation was found, or multiple were found.

chi.lease.get_lease(ref)→ dict
Get a lease by its ID or name.

Parameters
ref (str) – The ID or name of the lease.

Returns
The lease matching the ID or name.

chi.lease.get_lease_id(lease_name)→ str
Look up a lease’s ID from its name.

Parameters
name (str) – The name of the lease.

Returns
The ID of the found lease.

Raises
ValueError – If the lease could not be found, or if multiple leases were found with the same
name.

chi.lease.get_node_reservation(lease_ref , count=None, resource_properties=None, node_type=None,
architecture=None)

Retrieve a reservation ID for a node reservation.

The reservation ID is useful to have when launching bare metal instances.

Parameters

• lease_ref (str) – The ID or name of the lease.

• count (int) – An optional count of nodes the desired reservation was made for. Use this if
you have multiple reservations under a lease.

• resource_properties (list) – An optional set of resource property constraints the de-
sired reservation was made under. Use this if you have multiple reservations under a lease.

• node_type (str) – An optional node type the desired reservation was made for. Use this if
you have multiple reservations under a lease.

• architecture (str) – An optional node architecture the desired reservation was made for.
Use this if you have multiple reservations under a lease.

Returns
The ID of the reservation, if found.

Raises
ValueError – If no reservation was found, or multiple were found.

3.2. chi.lease 13

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError

Chameleon Cloud Python API, Release 0.1

chi.lease.get_reserved_floating_ips(lease_ref)→ list[str]
Get a list of Floating IP addresses reserved in a lease.

Parameters
lease_ref (str) – The ID or name of the lease.

Returns
A list of all reserved Floating IP addresses, if any were reserved.

chi.lease.lease_duration(days=1, hours=0)
Compute the start and end dates for a lease given its desired duration.

When providing both days and hours, the duration is summed. So, the following would be a lease for one and
a half days:

start_date, end_date = lease_duration(days=1, hours=12)

Parameters

• days (int) – The number of days the lease should be for.

• hours (int) – The number of hours the lease should be for.

chi.lease.wait_for_active(ref)
Wait for the lease to become active.

This function will wait for 2.5 minutes, which is a somewhat arbitrary amount of time.

Parameters
ref (str) – The name or ID of the lease.

Returns
The lease in ACTIVE state.

Raises
TimeoutError – If the lease fails to become active within the timeout.

3.2.2 Object-oriented interface

class chi.lease.Lease(**kwargs)
Creates and manages a lease, optionally with a context manager (with).

with Lease(session, node_type='compute_skylake') as lease:
instance = lease.create_server()
...

When using the context manager, on entering it will wait for the lease to launch, then on exiting it will delete the
lease, which in-turn also deletes the instances launched with it.

Parameters

• keystone_session – session object

• sequester (bool) – If the context manager catches that an instance failed to start, it will
not delete the lease, but rather extend it and rename it with the ID of the instance that failed.

• _no_clean (bool) – Don’t delete the lease at the end of a context manager

• kwargs – Parameters passed through to lease_create_nodetype() and in turn
lease_create_args()

14 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#TimeoutError
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

Chameleon Cloud Python API, Release 0.1

create_server(*server_args, **server_kwargs)
Generates instances using the resource of the lease. Arguments are passed to ccmanage.server.Server
and returns same object.

delete()

Deletes the lease

classmethod from_existing(id)
Attach to an existing lease by ID. When using in conjunction with the context manager, it will not delete
the lease at the end.

property ready

Returns True if the lease has started.

refresh()

Updates the lease data

property status

Refreshes and returns the status of the lease.

wait()

Blocks for up to 150 seconds, waiting for the lease to be ready. Raises a RuntimeError if it times out.

3.3 chi.server

The chi.servermodule exposes both a functional interface and an object-oriented interface for interacting with server
instances.

3.3.1 Functional interface

Any of the following functions can be directly imported and used individually:

from chi.server import get_server

s = server.get_server('my-server-name')

chi.server.associate_floating_ip(server_id, floating_ip_address=None)
Associate an allocated Floating IP with a server.

If no Floating IP is specified, one will be allocated dynamically.

Parameters

• server_id (str) – The ID of the server.

• floating_ip_address (str) – The IPv4 address of the Floating IP to assign. If specified,
this Floating IP must already be allocated to the project.

chi.server.create_server(server_name, reservation_id=None, key_name=None, network_id=None,
network_name='sharednet1', nics=[], image_id=None,
image_name='CC-Ubuntu20.04', flavor_id=None, flavor_name=None, count=1,
hypervisor_hostname=None)→ NovaServer | list[NovaServer]

Launch a new server instance.

Parameters

3.3. chi.server 15

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list

Chameleon Cloud Python API, Release 0.1

• server_name (str) – A name to give the server.

• reservation_id (str) – The ID of the Blazar reservation that will be used to select a target
host node. It is required to make a reservation for bare metal server instances.

• key_name (str) – A key pair name to associate with the server. Any user holding the private
key for the key pair will be able to SSH to the instance as the cc user. Defaults to the key
specified by the “key_name” context variable.

• network_id (str) – The network ID to connect the server to. The server will obtain an IP
address on this network when it boots.

• network_name (str) – The name of the network to connect the server to. If network_id
is also set, that takes priority.

• nics (list[dict]) – . . .

• image_id (str) – The image ID to use for the server’s disk image.

• image_name (str) – The name of the image to user for the server’s disk image. If image_id
is also set, that takes priority. (Default DEFAULT_IMAGE.)

• flavor_id (str) – The flavor ID to use when launching the server. If not set, and no
flavor_name is set, the first flavor found is used.

• flavor_name (str) – The name of the flavor to use when launching the server. If
flavor_id is also set, that takes priority. If not set, and no flavor_id is set, the first
flavor found is used.

• count (int) – The number of instances to launch. When launching bare metal server in-
stances, this number must be less than or equal to the total number of hosts reserved. (Default
1).

Returns

The created server instance. If count was larger than 1, then a
list of all created instances will be returned instead.

Raises
ValueError – if an invalid count is provided.

chi.server.delete_server(server_id)
Delete a server by its ID.

Parameters
server_id (str) – The ID of the server to delete.

chi.server.detach_floating_ip(server_id, floating_ip_address)
Remove an allocated Floating IP from a server by name.

Parameters

• server_id (str) – The name of the server.

• floating_ip_address (str) – The IPv4 address of the Floating IP to remove from the
server.

chi.server.get_flavor(ref)→ FlavorAccess
Get a flavor by its ID or name.

Parameters
ref (str) – The ID or name of the flavor.

16 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

Returns
The flavor matching the ID or name.

Raises
NotFound – If the flavor could not be found.

chi.server.get_flavor_id(name)→ str
Look up a flavor’s ID from its name.

Parameters
name (str) – The name of the flavor.

Returns
The ID of the found flavor.

Raises
NotFound – If the flavor could not be found.

chi.server.get_server(ref)→ Server
Get a server by its ID.

Parameters
ref (str) – The ID or name of the server.

Returns
The server matching the ID.

Raises
NotFound – If the server could not be found.

chi.server.get_server_id(name)→ str
Look up a server’s ID from its name.

Parameters
name (str) – The name of the server.

Returns
The ID of the found server.

Raises
NotFound – If the server could not be found.

chi.server.list_flavors()→ list[FlavorAccess]
Get a list of all available flavors.

Returns
A list of all flavors.

chi.server.list_servers(**kwargs)→ list[Server]
List all servers under the current project.

Parameters
kwargs – Keyword arguments, which will be passed to novaclient.v2.servers.list().
For example, to filter by instance name, provide search_opts={'name': 'my-instance'}

Returns
All servers associated with the current project.

chi.server.show_flavor(flavor_id)→ FlavorAccess
Get a flavor by its ID.

Parameters
flavor_id (str) – the ID of the flavor

3.3. chi.server 17

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

Returns
The flavor with the given ID.

chi.server.show_flavor_by_name(name)→ FlavorAccess
Get a flavor by its name.

Parameters
name (str) – The name of the flavor.

Returns
The flavor with the given name.

Raises
NotFound – If the flavor could not be found.

chi.server.show_server(server_id)→ Server
Get a server by its ID.

Parameters
server_id (str) – the ID of the server

Returns
The server with the given ID.

chi.server.show_server_by_name(name)→ Server
Get a server by its name.

Parameters
name (str) – The name of the server.

Returns
The server with the given name.

Raises
NotFound – If the server could not be found.

chi.server.update_keypair(key_name=None, public_key=None)→ Keypair
Update a key pair’s public key.

Due to how OpenStack Nova works, this requires deleting and re-creating the key even for public key updates.
The key will not be re-created if it already exists and the fingerprints match.

Parameters

• key_name (str) – The name of the key pair to update. Defaults to value of the “key_name”
context variable.

• public_key (str) – The public key to update the key pair to reference. Defaults to the
contents of the file specified by the “keypair_public_key” context variable.

Returns
The updated (or created) key pair.

chi.server.wait_for_active(server_id, timeout=1200)
Wait for the server to go in to the ACTIVE state.

If the server goes in to an ERROR state, this function will terminate. This is a blocking function.

Note: For bare metal servers, when the server transitions to ACTIVE state, this actually indicates it has started
its final boot. It may still take some time for the boot to complete and interfaces e.g., SSH to come up.

18 Chapter 3. Basic usage

https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.keypairs.html#novaclient.v2.keypairs.Keypair
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

If you want to wait for a TCP service like SSH, refer to wait_for_tcp().

Parameters

• server_id (str) – The ID of the server.

• timeout (int) – The number of seconds to wait for before giving up. Defaults to 20 minutes.

chi.server.wait_for_tcp(host, port, timeout=1200, sleep_time=5)
Wait until a port on a server starts accepting TCP connections.

The implementation is taken from wait_for_tcp_port.py.

Parameters

• host (str) – The host that should be accepting connections. This can be either a Floating
IP or a hostname.

• port (int) – Port number.

• timeout (int) – How long to wait before raising errors, in seconds. Defaults to 20 minutes.

• sleep_time (int) – How long to wait between each attempt in seconds. Defaults to 5
seconds.

Raises
TimeoutError – If the port isn’t accepting connection after time specified in timeout.

3.3.2 Object-oriented interface

The Server abstraction has been available historically for those who wish to use something with more of an OOP
flavor.

class chi.server.Server(id=None, lease=None, key=None, image='CC-Ubuntu20.04', **kwargs)
A wrapper object referring to a server instance.

This class is helpful if you want to use a more object-oriented programming approach when building your in-
frastrucutre. With the Server abstraction, you can for example do the following:

with Server(lease=my_lease, image=my_image) as server:
When entering this block, the server is guaranteed to be
in the "ACTIVE" state if it launched successfully.
server.associate_floating_ip()
Interact with the server (via, e.g., SSH), then...

When the block exits, the server will be terminated and deleted

The above example uses a context manager. The class can also be used without a context manager:

Triggers the launch of the server instance
server = Server(lease=my_lease, image=my_image)
Wait for server to be active
server.wait()
server.associate_floating_ip()
Interact with the server, then...
server.delete()

3.3. chi.server 19

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://gist.github.com/butla/2d9a4c0f35ea47b7452156c96a4e7b12
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#TimeoutError

Chameleon Cloud Python API, Release 0.1

id

The ID of an existing server instance. Use this if you have already launched the instance and just want a
convenient wrapper object for it.

Type
str

lease

The Lease the instance will be launched under.

Type
Lease

key

The name of the key pair to associate with the image. This is only applicable if launching the image; key
pairs cannot be added to a server that has already been launched and wrapped via the id attribute.

Type
str

image

The name or ID of the disk iage to use.

Type
str

name

A name to give the new instance. (Defaults to an auto-generated name.)

Type
str

net_ids

A list of network IDs to associate the instance with. The instance will obtain an IP address on each network
during boot.

Note: For bare metal instances, the number of network IDs cannot exceed the number of enabled NICs on
the bare metal node.

Type
list[str]

kwargs

Additional keyword arguments to pass to Nova’s server create() function.

associate_floating_ip()

Attach a floating IP to this server instance.

delete()

Delete this server instance.

disassociate_floating_ip()

Detach the floating IP attached to this server instance, if any.

property error: bool

Check if the instance is in an error state.

20 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.ServerManager.create
https://docs.python.org/3.7/library/functions.html#bool

Chameleon Cloud Python API, Release 0.1

property ready: bool

Check if the instance is marked as active.

rebuild(image_ref)
Rebuild this server instance.

Note: For bare metal instances, this effectively redeploys to the host and overwrites the local disk.

refresh()

Poll the latest state of the server instance.

property status: str

Get the instance status.

wait()

Wait for the server instance to finish launching.

If the server goes into an error state, this function will return early.

3.4 chi.network

The chi.network module exposes a functional interface for interacting with the various networking capabilities of
the testbed.

chi.network.add_port_to_router(router_id, port_id)
Add a port to a router.

Parameters

• router_id (str) – The router ID.

• port_id (str) – The port ID.

chi.network.add_port_to_router_by_name(router_name, port_name)
Add a port to a router, referencing the router and port by name.

Parameters

• router_name (str) – The router name.

• port_name (str) – The port name.

chi.network.add_route_to_router(router_id, cidr, nexthop)
Add a new route to a router.

Parameters

• router_id (str) – The router ID.

• cidr (str) – The destination subnet CIDR for the route.

• nexthop (str) – The nexthop address for the route.

chi.network.add_routes_to_router(router_id, routes)
Add a set of routes to a router.

Parameters

• router_id (str) – The router ID.

3.4. chi.network 21

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

• routes (list[dict]) – A list of routes to add. The list is expected to consist of items with
a ‘destination’ and ‘nexthop’ key, e.g.:

[
{'destination': '10.0.0.0/24', 'nexthop': '10.0.0.1'},
{'destination': '10.0.1.0/24', 'nexthop': '10.0.1.1'}

]

chi.network.add_subnet_to_router(router_id, subnet_id)
Add a subnet to a router.

Parameters

• router_id (str) – The router ID.

• subnet_id (str) – The subnet ID.

chi.network.add_subnet_to_router_by_name(router_name, subnet_name)
Add a subnet to a router, referencing the router and subnet by name.

Parameters

• router_name (str) – The router name.

• subnet_name (str) – The subnet name.

chi.network.bind_floating_ip(ip_address, port_id=None, fixed_ip_address=None)
Directly assign a Floating IP to an existing port/address.

Note: If you just want to attach a Floating IP to a server instance, the chi.server.
associate_floating_ip() function is simpler.

Parameters

• ip_address (str) – The Floating IP address.

• port_id (str) – The ID of the port to bind to.

• fixed_ip_address (str) – The address in the port to bind to. This is only required if the
port has multiple IP addresses assigned; by default the first IP in a port is bound.

chi.network.create_network(network_name, of_controller_ip=None, of_controller_port=None,
vswitch_name=None, provider='physnet1', port_security_enabled=True)→ dict

Create a network.

For an OpenFlow network include the IP and port of an OpenFlow controller on Chameleon or accessible through
the public Internet. Include a virtual switch name if you plan to add additional private VLANs to this switch.
Additional VLANs can be connected using a dedicated port corresponding to the VLAN tag and can be conrolled
using a valid OpenFlow controller.

Parameters

• network_name (str) – The new network name.

• of_controller_ip (str) – the IP of the optional OpenFlow controller. The IP must be
accessible on the public Internet.

• of_controller_port (str) – the port of the optional OpenFlow controller.

• vswitch_name (str) – The virtual switch to use name.

22 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

• provider (str) – the provider network to use when specifying stitchable VLANs (i.e. Ex-
oGENI). Default: ‘physnet1’

chi.network.create_port(port_name, network_id, fixed_ips=None, subnet_id=None, ip_address=None,
port_security_enabled=True)→ dict

Create a new port on a network.

This function has a short-form and a long-form invocation. In the short form, you can specify subnet_id and
ip_address to give the port a single assignment on a subnet. In the long form you can specify fixed_ips to
define multiple assignments.

Parameters

• port_name (str) – The name to give the new port.

• network_id (str) – The ID of the network that the port will be connected to.

• fixed_ips (list[dict]) – A list of IP assignments to give to the port on various subnets.
Each assignment must at minimum have a subnet_id defined. An optional ip_address
can be included on an assignment to specify the exact IP address to assign. Otherwise, one is
chosen automatically from the available IPs on the subnet. There can be multiple assignments
(i.e., IPs) on a single subnet.

• subnet_id (str) – The ID of the subnet that the port will be allocated on. The port will
be automatically assigned an IP address on this subnet, unless the ip_address parameter is
provided.

Note: This parameter is ignored if fixed_ips is set.

• ip_address (str) – The IP address to assign the port, if a specific IP address is desired.
By default an IP address is automatically picked from the target subnet.

Note: This parameter is ignored if fixed_ips is set.

• port_security_enabled (bool) – Whether to enable port security. In general this should
be kept on. (Default True).

Returns
The created port representation.

chi.network.create_router(router_name, gw_network_name=None)→ dict
Create a router, with or without a public gateway.

Parameters

• router_name (str) – The new router name.

• gw_network_name (str) – The name of the public gateway requested to provide subnets
connected this router NAT to the Internet.

Returns
The created router representation.

chi.network.create_subnet(subnet_name, network_id, cidr='192.168.1.0/24', allocation_pool_start=None,
allocation_pool_end=None, gateway_ip=None)→ dict

Create a subnet on a network.

Parameters

3.4. chi.network 23

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://wiki.openstack.org/wiki/Neutron/ML2PortSecurityExtensionDriver
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict

Chameleon Cloud Python API, Release 0.1

• subnet_name (str) – The name to give the new subnet.

• network_id (str) – The network to associate the subnet with ID.

• cidr (str) – The subnet’s IPv4 CIDR range. (Default 192.168.1.0/24)

• gateway_ip (str) – The subnet’s gateway address. If not defined, the first address in the
subnet will be automatically chosen as the gateway.

Returns
The new subnet representation.

chi.network.delete_network(network_id)
Delete the network.

Note: This does not perform a full teardown of the network, including removing subnets and ports. It will only
succeed if the network does not have any attached entities. See nuke_network() for a more complete teardown
function.

Parameters
network_id (str) – The network ID.

chi.network.delete_port(port_id)
Delete the port.

Parameters
port_id (str) – The port ID.

chi.network.delete_router(router_id)
Delete the router.

Parameters
router_id (str) – The router ID.

chi.network.delete_subnet(subnet_id)
Delete the subnet.

Parameters
subnet_id (str) – The subnet ID.

chi.network.get_floating_ip(ip_address)→ dict
Get the floating IP representation for an IP address.

Parameters
ip_address (str) – The IP address of the floating IP.

Returns
The floating IP representation.

chi.network.get_free_floating_ip(allocate=True)→ dict
Get the first unallocated floating IP available to your project.

Parameters
allocate (bool) – Whether to allocate a new floating IP if there are no Floating IPs currently
free in your project. Defaults to True.

Returns
The free floating IP representation.

24 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#bool

Chameleon Cloud Python API, Release 0.1

chi.network.get_network(ref)→ dict
Get a network by its name or ID.

Parameters
ref (str) – The name or ID of the network.

Returns
The network representation.

Raises
RuntimeError – If the network could not be found, or multiple networks were returned for the
search term.

chi.network.get_network_id(name)→ str
Look up a network’s ID from its name.

Parameters
name (str) – The network name.

Returns
The network’s ID, if found.

Raises
RuntimeError – If the network could not be found, or multiple networks were returned for the
search term.

chi.network.get_port(ref)→ dict
Get a port by its name or ID.

Parameters
ref (str) – The name or ID of the port.

Returns
The port representation.

Raises
RuntimeError – If the port could not be found, or multiple ports were returned for the search
term.

chi.network.get_port_id(name)→ str
Look up a port’s ID from its name.

Parameters
name (str) – The port name.

Returns
The port’s ID, if found.

Raises
RuntimeError – If the port could not be found, or multiple ports were returned for the search
term.

chi.network.get_router(ref)→ dict
Get a router by its name or ID.

Parameters
ref (str) – The name or ID of the router.

Returns
The router representation.

3.4. chi.network 25

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

Raises
RuntimeError – If the router could not be found, or multiple routers were returned for the search
term.

chi.network.get_router_id(name)→ str
Look up a router’s ID from its name.

Parameters
name (str) – The router name.

Returns
The router’s ID, if found.

Raises
RuntimeError – If the router could not be found, or multiple routers were returned for the search
term.

chi.network.get_subnet(ref)→ dict
Get a subnet by its name or ID.

Parameters
ref (str) – The name or ID of the subnet.

Returns
The subnet representation.

Raises
RuntimeError – If the subnet could not be found, or multiple subnets were returned for the
search term.

chi.network.get_subnet_id(name)→ str
Look up a subnet’s ID from its name.

Parameters
name (str) – The subnet name.

Returns
The subnet’s ID, if found.

Raises
RuntimeError – If the subnet could not be found, or multiple subnets were returned for the
search term.

chi.network.list_floating_ips()→ list[dict]
List all floating ips associated with the current project.

Returns
A list of all the found floating ips.

chi.network.list_networks()→ list[dict]
List all networks associated with the current project.

Returns
A list of all the found networks.

chi.network.list_ports()→ list[dict]
List all ports associated with the current project.

Returns
A list of all the found ports.

26 Chapter 3. Basic usage

https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict

Chameleon Cloud Python API, Release 0.1

chi.network.list_routers()→ list[dict]
List all routers associated with the current project.

Returns
A list of all the found routers.

chi.network.list_subnets()→ list[dict]
List all subnets associated with the current project.

Returns
A list of all the found subnets.

chi.network.nuke_network(network_ref: str)
Completely tear down the network.

Cleanly tearing down an OpenStack network representation involves a few separate steps:

1. Detach the network’s subnets from the router.

2. Delete the router.

3. Delete the subnet(s).

4. Delete the network.

This function performs all of those steps for you.

Note: This function will not work well for very advance networks, perhaps those connected to multiple routers.
You should perform your own cleanup if your network’s subnets are attached to multiple routers.

Parameters
network_ref (str) – The network name or ID.

chi.network.remove_all_routes_from_router(router_id)
Remove all routes from the router.

Parameters
router_id (str) – The router ID.

chi.network.remove_port_from_router(router_id, port_id)
Remove a port from the router.

Parameters

• router_id (str) – The router ID.

• port_id (str) – The port ID.

chi.network.remove_route_from_router(router_id, cidr, nexthop)
Remove a single route from the router.

Parameters

• router_id (str) – The router ID.

• cidr (str) – The destination subnet CIDR for the route.

• nexthop (str) – The nexthop address for the route.

3.4. chi.network 27

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

chi.network.remove_routes_from_router(router_id, routes)
Remove a set of routes from a router.

Parameters

• router_id (str) – The router ID.

• routes (list[dict]) – A list of routes to remove. The list is expected to consist of items
with a ‘destination’ and ‘nexthop’ key, e.g.:

[
{'destination': '10.0.0.0/24', 'nexthop': '10.0.0.1'},
{'destination': '10.0.1.0/24', 'nexthop': '10.0.1.1'}

]

chi.network.remove_subnet_from_router(router_id, subnet_id)
Remove a subnet from the router.

Parameters

• router_id (str) – The router ID.

• subnet_id (str) – The subnet ID.

3.4.1 Wizards

There are additionally some functions that tie together several common tasks.

class chi.network.wizard

A collection of “wizard” functions.

These utility functions are very opinionated but can reduce boilerplate.

static create_network(name_prefix, of_controller_ip=None, of_controller_port=None, gateway=False)
Create a network and subnet, and connect the subnet to a new router.

Parameters

• name_prefix (str) – The common name prefix for all created entities.

• of_controller_ip (str) – The OpenFlow controller IP, if using.

• of_controller_port (int) – The OpenFlow controller port, if using.

• gateway (bool) – Whether to add a WAN gateway to the router. Routers with a WAN
gateway are able to NAT to the Internet.

Returns
The created network representation.

static delete_network(name_prefix)
Delete a network created via :func:wizard.create_network.

Parameters
name_prefix (str) – The common name prefix for all created entities.

28 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

3.5 chi.image

The chi.image module exposes a functional interface for interacting with disk images.

chi.image.get_image(ref)
Get an image by its ID or name.

Parameters
ref (str) – The ID or name of the image.

Returns
The image matching the ID or name.

Raises
NotFound – If the image could not be found.

chi.image.get_image_id(name)
Look up an image’s ID from its name.

Parameters
name (str) – The name of the image.

Returns
The ID of the found image.

Raises
ValueError – If the image could not be found, or if multiple images matched the name.

chi.image.list_images()

List all images under the current project.

Returns
All images associated with the current project.

3.6 chi.container

The chi.container module exposes a functional interface for interacting with application containers.

Important: Currently, only the CHI@Edge site support container operations.

chi.container.associate_floating_ip(container_ref: str, floating_ip_address=None)→ str
Assign a Floating IP address to a container.

The container’s first address will be used for the assignment.

Parameters

• container_ref (str) – The name or ID of the container.

• floating_ip_address (str) – The Floating IP address, which must already be owned
by the requesting project. If not defined, a Floating IP will be allocated, if there are any
available.

Returns
The Floating IP address, if it was bound successfully, else None.

3.5. chi.image 29

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

chi.container.create_container(name: str, image: str = None, exposed_ports: list[str] = None,
reservation_id: str = None, start: bool = True, start_timeout: int = None,
platform_version: int = 2, **kwargs)→ Container

Create a container instance.

Parameters

• name (str) – The name to give the container.

• image (str) – The Docker image, with or without tag information. If no tag is provided,
“latest” is assumed.

• device_profiles (list[str]) – An optional list of device profiles to request be config-
ured on the container when it is created. Edge devices may have differing sets of supported
device profiles, so it is important to understand which profiles are supported by the target
device for your container.

• environment (dict) – A set of environment variables to pass to the container.

• exposed_ports (list[str]) – A list of ports to expose on the container. TCP or UDP
can be provided with a slash prefix, e.g., “80/tcp” vs. “53/udp”. If no protocol is provided,
TCP is assumed.

• host (str) – The Zun host to launch a container on. If not specified, the host is chosen by
Zun.

• runtime (str) – The container runtime to use. This should only be overridden when ex-
plicitly launching containers onto a host/platform requiring a separate runtime to, e.g., pass-
through GPU devices, such as the “nvidia” runtime provided by NVIDIA Jetson Nano/TX2.

• start (bool) – Whether to automatically start the container after it is created. Default True.

• **kwargs – Additional keyword arguments to send to the Zun client’s container create call.

chi.container.destroy_container(container_ref: str)
Delete the container.

This will automatically stop the container if it is currently running.

Parameters
container_ref (str) – The name or ID of the container.

chi.container.download(container_ref: str, source: str, dest: str)
Download a file or directory from a running container.

This method requires your running container to include both the POSIX sh and GNU tar utilities.

Parameters

• container_ref (str) – The name or ID of the container.

• source (str) – The (container) path of the file or directory.

• dest (str) – The (local) path to download to.

chi.container.execute(container_ref: str, command: str)→ dict
Execute a one-off process inside a running container.

Parameters

• container_ref (str) – The name or ID of the container.

• command (str) – The command to run.

30 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

Returns
A summary of the output of the command, with “output” and “exit_code”.

chi.container.get_container(container_ref: str)→ Container
Get a container’s information.

Parameters

• container_ref (str) – The name or ID of the container.

• tag (str) – An optional version to tag the container image with. If not defined, defaults to
“latest”.

Returns
The container, if found.

chi.container.get_logs(container_ref: str, stdout=True, stderr=True)
Print all logs outputted by the container.

Parameters

• container_ref (str) – The name or ID of the container.

• stdout (bool) – Whether to include stdout logs. Default True.

• stderr (bool) – Whether to include stderr logs. Default True.

Returns

A string containing all log output. Log lines will be delimited by
newline characters.

chi.container.list_containers()→ list[Container]
List all containers owned by this project.

Returns
A list of containers.

chi.container.snapshot_container(container_ref: str, repository: str, tag: str = 'latest')→ str
Create a snapshot of a running container.

This will store the container’s file system in Glance as a new Image. You can then specify the Image ID in
container create requests.

Parameters

• container_ref (str) – The name or ID of the container.

• repository (str) – The name to give the snapshot.

• tag (str) – An optional version tag to give the snapshot. Defaults to “latest”.

chi.container.upload(container_ref: str, source: str, dest: str)→ dict
Upload a file or directory to a running container.

This method requires your running container to include the GNU tar utility.

Parameters

• container_ref (str) – The name or ID of the container.

• source (str) – The (local) path to the file or directory to upload.

• dest (str) – The (container) path to upload the file or directory to.

3.6. chi.container 31

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Chameleon Cloud Python API, Release 0.1

chi.container.wait_for_active(container_ref: str, timeout: int = 120)→ Container
Wait for a container to transition to the running state.

Parameters

• container_ref (str) – The name or ID of the container.

• timeout (int) – How long to wait before issuing a TimeoutError.

Raises
TimeoutError – if the timeout was reached before the container started.

Returns
The container representation.

3.7 chi.share

The chi.share module exposes a functional interface for interacting with shares of the testbed.

chi.share.create_share(size, name=None, description=None, metadata=None, is_public=False)
Create a share.

Parameters

• size (int) – size in GiB.

• name (str) – name of new share.

• description (str) – description of a share.

• is_public (bool) – whether to set share as public or not.

Returns
The created share.

chi.share.delete_share(share)
Delete a share.

Parameters
share – either share object or text with its ID.

chi.share.extend_share(share, new_size)
Extend the size of the specific share.

Parameters

• share – either share object or text with its ID.

• new_size – desired size to extend share to.

chi.share.get_access_rules(share)
Get access list to a share.

Parameters
share – either share object or text with its ID.

Returns
A list of access rules.

32 Chapter 3. Basic usage

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#TimeoutError
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool

Chameleon Cloud Python API, Release 0.1

chi.share.get_share(ref)
Get a share by its ID or name.

Parameters
ref (str) – The ID or name of the share.

Returns
The share matching the ID or name.

Raises
NotFound – If the share could not be found.

chi.share.get_share_id(name)
Look up a share’s ID from its name.

Parameters
name (str) – The name of the share.

Returns
The ID of the found share.

Raises
ValueError – If the share could not be found, or if multiple shares matched the name.

chi.share.list_shares()

List all shares under the current project.

Returns
All shares associated with the current project.

chi.share.shrink_share(share, new_size)
Shrink the size of the specific share.

Parameters

• share – either share object or text with its ID.

• new_size – desired size to shrink share to.

3.8 chi.ssh

The chi.ssh module allows you to create a remote connection to your instance.

class chi.ssh.Remote(ip=None, server=None, user='cc', **kwargs)
Wrapper for Fabric Connection

3.9 Launching a bare metal instance

First, select which project and site you wish to authenticate against.

[]: import chi

chi.use_site('CHI@UC')
Set to your project's charge code
chi.set('project_name', 'CH-XXXXXX')

3.8. chi.ssh 33

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.fabfile.org/en/latest/api/connection.html#fabric.connection.Connection
https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/notebooks/baremetal.ipynb&ephemeral=true

Chameleon Cloud Python API, Release 0.1

3.9.1 Launch a bare metal instance.

Functions used in this example:

• create_server

• get_node_reservation

[]: from chi.lease import get_node_reservation
from chi.server import create_server

We assume a lease has already been created, for example with
``chi.lease.create_lease```
lease_name = "my_lease"
server_name = "my_server"
reservation_id = get_node_reservation(lease_name)
server = create_server(server_name, reservation_id=reservation_id)

3.9.2 Wait for a server’s port to come up before proceeding.

Sometimes you want to interact with the server over a remote interface and need to wait until it’s up and accepting
connections. The :func:~chi.server.wait_for_tcp function allows you to do just that. This example also illustrates
how you can bind a Floating IP (public IP) to the server so it can be reached over the internet.

Functions used in this example:

• associate_floating_ip

• wait_for_tcp

[]: from chi.server import associate_floating_ip, wait_for_tcp

Note: this is a placeholder server ID. Yours will be different!
server_id can be obtained like `server.id` if you created the server
with `create_server`. It can also be obtained via `get_server_id(name)`
server_id = "6b2bae1e-0311-493f-836c-a9da0cb9e0c0"
ip = associate_floating_ip(server_id)

Wait for SSH connectivity over port 22
wait_for_tcp(ip, port=22)

34 Chapter 3. Basic usage

../modules/server.html#chi.server.create_server
../modules/lease.html#chi.lease.get_node_reservation
../modules/server.html#chi.server.associate_floating_ip
../modules/server.html#chi.server.wait_for_tcp
https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/notebooks/container.ipynb&ephemeral=true

Chameleon Cloud Python API, Release 0.1

3.10 Launching a container

First, select which project and site you wish to authenticate against.

[]: import chi

chi.use_site('CHI@UC')
Set to your project's charge code
chi.set('project_name', 'CH-XXXXXX')

3.10.1 Launch a container.

Functions used in this example:

• create_container

• get_device_reservation

[]: from chi.lease import get_device_reservation
from chi.container import create_container

We assume a lease has already been created, for example with
``chi.lease.create_lease```
lease_name = "my_lease"
container_name = "my_container"
reservation_id = get_device_reservation(lease_name)
container = create_container(

container_name,
image="centos:8",
reservation_id=reservation_id,

)

3.11 Making a reservation

First, select which project and site you wish to authenticate against.

[]: import chi

chi.use_site('CHI@UC')
Set to your project's charge code
chi.set('project_name', 'CH-XXXXXX')

3.10. Launching a container 35

../modules/container.html#chi.container.create_container
../modules/lease.html#chi.lease.get_device_reservation
https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/notebooks/reservations.ipynb&ephemeral=true

Chameleon Cloud Python API, Release 0.1

3.11.1 Reserve a bare metal node.

Multiple nodes can be reserved at once by changing the count variable. This example makes a reservation for the
“compute_skylake” node type. See here for a complete list of node types available currently.

Functions used in this example:

• add_node_reservation

• lease_duration

• create_lease

[]: from chi.lease import lease_duration, add_node_reservation, create_lease

lease_name = "myLease"
node_type = "compute_skylake"
start_date, end_date = lease_duration(days=1)

Build list of reservations (in this case there is only one reservation)
reservations = []
add_node_reservation(reservations, count=1, node_type=node_type)
Create the lease
lease = create_lease(lease_name, reservations, start_date=start_date,

end_date=end_date)

3.11.2 Reserve a floating IP.

While it’s possible to allocate a floating IP ad hoc from Chameleon most of the time, there are a limited amount of IPs
and they are sometimes exhausted. You can reserve a floating IP to ensure you have access to one to attach to your
experimental nodes to allow, e.g., external SSH connectivity.

See here for some tips on how to make the most out of a single floating IP, which can help you avoid excessive charges.

Functions used in this example:

• add_fip_reservation

• lease_duration

• create_lease

[]: from chi.lease import lease_duration, add_fip_reservation, create_lease

lease_name = "myLease"
start_date, end_date = lease_duration(days=1)

Build list of reservations (in this case there is only one reservation)
reservation_list = []
add_fip_reservation(reservation_list, count=1)

Create the lease
(continues on next page)

36 Chapter 3. Basic usage

https://chameleoncloud.readthedocs.io/en/latest/technical/reservations.html#chameleon-node-types
../modules/lease.html#chi.lease.add_node_reservation
../modules/lease.html#chi.lease.lease_duration
../modules/lease.html#chi.lease.create_lease
https://www.chameleoncloud.org/blog/2019/02/27/save-planet-use-fewer-ips/
../modules/lease.html#chi.lease.add_fip_reservation
../modules/lease.html#chi.lease.lease_duration
../modules/lease.html#chi.lease.create_lease

Chameleon Cloud Python API, Release 0.1

(continued from previous page)

lease = create_lease(lease_name, reservation_list, start_date=start_date,
end_date=end_date)

3.11.3 Reserve a VLAN segment.

This example illustrates how to reserve an isolated VLAN in order to ensure your network experiment is not subject to
cross-traffic from other experimenters.

This is also how you reserve stitchable VLANs provided through ExoGENI. For these VLANs, you must set
physical_network to “exogeni”.

Functions used in this example:

• add_network_reservation

• lease_duration

• create_lease

[]: from chi.lease import lease_duration, add_network_reservation, create_lease

lease_name = "myLease"
network_name = f"{lease_name}Network"
of_controller_ip = None
of_controller_port = None
vswitch_name = None
physical_network = "physnet1"
start_date, end_date = lease_duration(days=1)

Build list of reservations (in this case there is only one reservation)
reservations = []
add_network_reservation(reservations,

network_name=network_name,
of_controller_ip=of_controller_ip,
of_controller_port=of_controller_port,
vswitch_name=vswitch_name,
physical_network=physical_network)

Create the lease
lease = create_lease(lease_name, reservations, start_date=start_date,

end_date=end_date)

3.11. Making a reservation 37

https://chameleoncloud.readthedocs.io/en/latest/technical/networks/networks_stitching.html
../modules/lease.html#chi.lease.add_network_reservation
../modules/lease.html#chi.lease.lease_duration
../modules/lease.html#chi.lease.create_lease

Chameleon Cloud Python API, Release 0.1

3.11.4 Reserve multiple types of resources in a single lease.

Functions used in this example:

• add_node_reservation

• add_network_reservation

• add_fip_reservation

• lease_duration

• create_lease

[]: from chi.lease import (
lease_duration, add_node_reservation, add_network_reservation,
add_fip_reservation, create_lease)

lease_name = "myLease"
start_date, end_date = lease_duration(days=1)

Build list of reservations
reservations = []
add_node_reservation(reservations, count=1, node_type="compute_skylake")
add_network_reservation(reservations, network_name=f"{lease_name}Network")
add_fip_reservation(reservations, count=1)

Create the lease
lease = create_lease(lease_name, reservations, start_date=start_date,

end_date=end_date)

38 Chapter 3. Basic usage

../modules/lease.html#chi.lease.add_node_reservation
../modules/lease.html#chi.lease.add_network_reservation
../modules/lease.html#chi.lease.add_fip_reservation
../modules/lease.html#chi.lease.lease_duration
../modules/lease.html#chi.lease.create_lease

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

39

Chameleon Cloud Python API, Release 0.1

40 Chapter 4. Indices and tables

PYTHON MODULE INDEX

c
chi, 7
chi.container, 29
chi.image, 29
chi.lease, 11
chi.network, 21
chi.server, 15
chi.share, 32
chi.ssh, 33

41

Chameleon Cloud Python API, Release 0.1

42 Python Module Index

INDEX

A
add_device_reservation() (in module chi.lease), 11
add_fip_reservation() (in module chi.lease), 11
add_network_reservation() (in module chi.lease), 11
add_node_reservation() (in module chi.lease), 11
add_port_to_router() (in module chi.network), 21
add_port_to_router_by_name() (in module

chi.network), 21
add_route_to_router() (in module chi.network), 21
add_routes_to_router() (in module chi.network), 21
add_subnet_to_router() (in module chi.network), 22
add_subnet_to_router_by_name() (in module

chi.network), 22
associate_floating_ip() (chi.server.Server

method), 20
associate_floating_ip() (in module chi.container),

29
associate_floating_ip() (in module chi.server), 15

B
bind_floating_ip() (in module chi.network), 22
blazar() (in module chi), 7

C
chi

module, 7
chi.container

module, 29
chi.image

module, 29
chi.lease

module, 11
chi.network

module, 21
chi.server

module, 15
chi.share

module, 32
chi.ssh

module, 33
cinder() (in module chi), 7
connection() (in module chi), 8

create_container() (in module chi.container), 29
create_lease() (in module chi.lease), 12
create_network() (chi.network.wizard static method),

28
create_network() (in module chi.network), 22
create_port() (in module chi.network), 23
create_router() (in module chi.network), 23
create_server() (chi.lease.Lease method), 15
create_server() (in module chi.server), 15
create_share() (in module chi.share), 32
create_subnet() (in module chi.network), 23

D
delete() (chi.lease.Lease method), 15
delete() (chi.server.Server method), 20
delete_lease() (in module chi.lease), 12
delete_network() (chi.network.wizard static method),

28
delete_network() (in module chi.network), 24
delete_port() (in module chi.network), 24
delete_router() (in module chi.network), 24
delete_server() (in module chi.server), 16
delete_share() (in module chi.share), 32
delete_subnet() (in module chi.network), 24
destroy_container() (in module chi.container), 30
detach_floating_ip() (in module chi.server), 16
disassociate_floating_ip() (chi.server.Server

method), 20
download() (in module chi.container), 30

E
error (chi.server.Server property), 20
execute() (in module chi.container), 30
extend_share() (in module chi.share), 32

F
from_existing() (chi.lease.Lease class method), 15

G
get() (in module chi), 8
get_access_rules() (in module chi.share), 32
get_container() (in module chi.container), 31

43

Chameleon Cloud Python API, Release 0.1

get_device_reservation() (in module chi.lease), 12
get_flavor() (in module chi.server), 16
get_flavor_id() (in module chi.server), 17
get_floating_ip() (in module chi.network), 24
get_free_floating_ip() (in module chi.network), 24
get_image() (in module chi.image), 29
get_image_id() (in module chi.image), 29
get_lease() (in module chi.lease), 13
get_lease_id() (in module chi.lease), 13
get_logs() (in module chi.container), 31
get_network() (in module chi.network), 24
get_network_id() (in module chi.network), 25
get_node_reservation() (in module chi.lease), 13
get_port() (in module chi.network), 25
get_port_id() (in module chi.network), 25
get_reserved_floating_ips() (in module chi.lease),

14
get_router() (in module chi.network), 25
get_router_id() (in module chi.network), 26
get_server() (in module chi.server), 17
get_server_id() (in module chi.server), 17
get_share() (in module chi.share), 32
get_share_id() (in module chi.share), 33
get_subnet() (in module chi.network), 26
get_subnet_id() (in module chi.network), 26
glance() (in module chi), 8
gnocchi() (in module chi), 8

I
id (chi.server.Server attribute), 19
image (chi.server.Server attribute), 20
ironic() (in module chi), 8

K
key (chi.server.Server attribute), 20
keystone() (in module chi), 9
kwargs (chi.server.Server attribute), 20

L
lease (chi.server.Server attribute), 20
Lease (class in chi.lease), 14
lease_duration() (in module chi.lease), 14
list_containers() (in module chi.container), 31
list_flavors() (in module chi.server), 17
list_floating_ips() (in module chi.network), 26
list_images() (in module chi.image), 29
list_networks() (in module chi.network), 26
list_ports() (in module chi.network), 26
list_routers() (in module chi.network), 26
list_servers() (in module chi.server), 17
list_shares() (in module chi.share), 33
list_subnets() (in module chi.network), 27

M
manila() (in module chi), 9
module

chi, 7
chi.container, 29
chi.image, 29
chi.lease, 11
chi.network, 21
chi.server, 15
chi.share, 32
chi.ssh, 33

N
name (chi.server.Server attribute), 20
net_ids (chi.server.Server attribute), 20
neutron() (in module chi), 9
nova() (in module chi), 9
nuke_network() (in module chi.network), 27

P
params() (in module chi), 9

R
ready (chi.lease.Lease property), 15
ready (chi.server.Server property), 20
rebuild() (chi.server.Server method), 21
refresh() (chi.lease.Lease method), 15
refresh() (chi.server.Server method), 21
Remote (class in chi.ssh), 33
remove_all_routes_from_router() (in module

chi.network), 27
remove_port_from_router() (in module chi.network),

27
remove_route_from_router() (in module

chi.network), 27
remove_routes_from_router() (in module

chi.network), 27
remove_subnet_from_router() (in module

chi.network), 28
reset() (in module chi), 9

S
Server (class in chi.server), 19
session() (in module chi), 10
set() (in module chi), 10
show_flavor() (in module chi.server), 17
show_flavor_by_name() (in module chi.server), 18
show_server() (in module chi.server), 18
show_server_by_name() (in module chi.server), 18
shrink_share() (in module chi.share), 33
snapshot_container() (in module chi.container), 31
status (chi.lease.Lease property), 15
status (chi.server.Server property), 21

44 Index

Chameleon Cloud Python API, Release 0.1

U
update_keypair() (in module chi.server), 18
upload() (in module chi.container), 31
use_site() (in module chi), 10

W
wait() (chi.lease.Lease method), 15
wait() (chi.server.Server method), 21
wait_for_active() (in module chi.container), 31
wait_for_active() (in module chi.lease), 14
wait_for_active() (in module chi.server), 18
wait_for_tcp() (in module chi.server), 19
wizard (class in chi.network), 28

Index 45

	Installation
	Authentication
	Basic usage
	chi
	chi.lease
	Functional interface
	Object-oriented interface

	chi.server
	Functional interface
	Object-oriented interface

	chi.network
	Wizards

	chi.image
	chi.container
	chi.share
	chi.ssh
	Launching a bare metal instance
	Launch a bare metal instance.
	Wait for a server’s port to come up before proceeding.

	Launching a container
	Launch a container.

	Making a reservation
	Reserve a bare metal node.
	Reserve a floating IP.
	Reserve a VLAN segment.
	Reserve multiple types of resources in a single lease.

	Indices and tables
	Python Module Index
	Index

