

Chameleon Cloud Python API

python-chi is a Python library that can help you interact with the
Chameleon testbed [https://www.chameleoncloud.org] to improve your
workflows with automation. It additionally pairs well with environments like
Jupyter Notebooks.

Installation

[image: _images/python-chi.svg]
 [https://pypi.org/project/python-chi/]

 chi

chi

The chi module exposes a global context object and helpers for generating
clients for interfacing with the various Chameleon services.

	
chi.blazar(session=None) → BlazarClient

	Get a preconfigured client for Blazar, the reservation service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Blazar client.

	
chi.cinder(session=None) → CinderClient

	Get a preconfigured client for Cinder, the persistent volume service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Cinder client.

	
chi.connection(session=None) → Connection

	Get connection context for OpenStack SDK.

The returned openstack.connection.Connection object has
several proxy modules attached for each service provided by the cloud.

Note

For the most part, it is more straightforward to use clients specific
to the service you are targeting. However, some of the proxy modules
are useful for operations that span a few services, such as assigning
a Floating IP to a server instance.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new connection proxy.

	
chi.get(key)

	Get a context parameter by name.

	Parameters:

	key (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – the parameter name.

	Returns:

	the parameter value.

	Return type:

	any

	Raises:

	cfg.NoSuchOptError – if the parameter is not supported.

	
chi.glance(session=None) → GlanceClient

	Get a preconfigured client for Glance, the image service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Glance client.

	
chi.gnocchi(session=None) → GnocchiClient

	Get a preconfigured client for Gnocchi, the metrics service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Gnocchi client.

	
chi.ironic(session=None) → IronicClient

	Get a preconfigured client for Ironic, the bare metal service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Ironic client.

	
chi.keystone(session=None) → KeystoneClient

	Get a preconfigured client for Keystone, the authentication service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Keystone client.

	
chi.manila(session=None) → ManilaClient

	Get a preconfigured client for Manila, the share service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Manila client.

	
chi.neutron(session=None) → NeutronClient

	Get a preconfigured client for Neutron, the networking service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Neutron client.

	
chi.nova(session=None) → NovaClient

	Get a preconfigured client for Nova, the compute service.

	Parameters:

	session (Session) – An authentication session object. By default a
new session is created via chi.session().

	Returns:

	A new Nova client.

	
chi.params()

	List all parameters currently set on the context.

	Returns:

	a list of parameter names.

	Return type:

	List[str [https://docs.python.org/3.7/library/stdtypes.html#str]]

	
chi.reset()

	Reset the context, removing all overrides and defaults.

The auth_type parameter will be defaulted to the value of the
OS_AUTH_TYPE environment variable, falling back to “v3token” if not defined.

All context parameters will revert to the default values inferred from
environment variables.

	
chi.session()

	Get a Keystone Session object suitable for authenticating a client.

	Returns:

	the authentication session object.

	Return type:

	keystoneauth1.session.Session

	
chi.set(key, value)

	Set a context parameter by name.

	Parameters:

	
	key (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – the parameter name.

	value (any) – the parameter value.

	Raises:

	cfg.NoSuchOptError – if the parameter is not supported.

	
chi.use_site(site_name)

	Configure the global request context to target a particular CHI site.

Targeting a site will mean that leases, instance launch requests, and any
other API calls will be sent to that site. By default, no site is selected,
and one must be explicitly chosen.

chi.use_site("CHI@UC")

Changing the site will affect future calls the client makes, implicitly.
Therefore something like this is possible:

chi.use_site("CHI@UC")
chi.lease.create_lease("my-uc-lease", reservations)
chi.use_site("CHI@TACC")
chi.lease.create_lease("my-tacc-lease", reservations)

	Parameters:

	site_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the site, e.g., “CHI@UC”.

 chi.lease

chi.lease

The chi.lease module exposes both a functional interface and an
object-oriented interface for interacting with resource leases.

Functional interface

	
chi.lease.add_device_reservation(reservation_list, count=1, machine_name=None, device_model=None, device_name=None)

	Add an IoT/edge device reservation to a reservation list.

	Parameters:

	
	reservation_list (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – The list of reservations to add to.

	count (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of devices to request.

	machine_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The device machine name to reserve. This should match
a “machine_name” property of the devices registered in Blazar. This
is the easiest way to reserve a particular device type, e.g.
“raspberrypi4-64”.

	device_model (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The model of device to reserve. This should match
a “model” property of the devices registered in Blazar.

	device_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of a specific device to reserve. If this
is provided in conjunction with count or other constraints,
an error will be raised, as there is only 1 possible device that
can match this criteria, because devices have unique names.

	Raises:

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If device_name is provided, but count is greater
 than 1, or some other constraint is present.

	
chi.lease.add_fip_reservation(reservation_list, count=1)

	Add a floating IP reservation to a reservation list.

	Parameters:

	
	reservation_list (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – The list of reservations to add to.
The list will be extended in-place.

	count (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of floating IPs to reserve.

	
chi.lease.add_network_reservation(reservation_list, network_name, of_controller_ip=None, of_controller_port=None, vswitch_name=None, resource_properties=None, physical_network='physnet1')

	Add a network reservation to a reservation list.

	Parameters:

	
	reservation_list (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – The list of reservations to add to.
The list will be extended in-place.

	network_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the network to create when the
reservation starts.

	of_controller_ip (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The OpenFlow controller IP, if the network
should be controlled by an external controller.

	of_controller_port (int [https://docs.python.org/3.7/library/functions.html#int]) – The OpenFlow controller port.

	vswitch_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the virtual switch associated with
this network. See the virtual forwarding context documentation [https://chameleoncloud.readthedocs.io/en/latest/technical/networks/networks_sdn.html#corsa-dp2000-virtual-forwarding-contexts-network-layout-and-advanced-features]
for more details.

	resource_properties (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – A list of resource property constraints. These take
the form [<operation>, <search_key>, <search_value>]

	physical_network (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The physical provider network to reserve from.
This only needs to be changed if you are reserving a stitchable
network [https://chameleoncloud.readthedocs.io/en/latest/technical/networks/networks_stitching.html].
(Default “physnet1”).

	
chi.lease.add_node_reservation(reservation_list, count=1, resource_properties=None, node_type=None, architecture=None)

	Add a node reservation to a reservation list.

	Parameters:

	
	reservation_list (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – The list of reservations to add to.
The list will be extended in-place.

	count (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of nodes of the given type to request.
(Default 1).

	resource_properties (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – A list of resource property constraints. These take
the form [<operation>, <search_key>, <search_value>], e.g.:

["==", "$node_type", "some-node-type"]: filter the reservation to only
 nodes with a `node_type` matching "some-node-type".
[">", "$architecture.smt_size", 40]: filter to nodes having more than 40
 (hyperthread) cores.

	node_type (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The node type to request. If None, the reservation will not
target any particular node type. If resource_properties is defined, the
node type constraint is added to the existing property constraints.

	architecture (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The node architecture to request. If resource_properties
is defined, the architecture constraint is added to the existing property
constraints.

	
chi.lease.create_lease(lease_name, reservations=[], start_date=None, end_date=None)

	Create a new lease with some requested reservations.

	Parameters:

	
	lease_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name to give the new lease.

	reservations (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – The reservations to request with the lease.

	start_date (datetime) – The start date of the lease. (Defaults to now.)

	end_date (datetime) – The end date of the lease. (Defaults to 1 day from
the lease start date.)

	Returns:

	The created lease representation.

	
chi.lease.delete_lease(ref)

	Delete the lease.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the lease.

	
chi.lease.get_device_reservation(lease_ref, count=None, machine_name=None, device_model=None, device_name=None)

	Retrieve a reservation ID for a device reservation.

The reservation ID is useful to have when requesting containers.

	Parameters:

	
	lease_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the lease.

	count (int [https://docs.python.org/3.7/library/functions.html#int]) – An optional count of devices the desired reservation was
made for. Use this if you have multiple reservations under a lease.

	machine_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – An optional device machine name the desired reservation
was made for. Use this if you have multiple reservations under a lease.

	device_model (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – An optional device model the desired reservation was
made for. Use this if you have multiple reservations under a lease.

	device_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – An optional device name the desired reservation was
made for. Use this if you have multiple reservations under a lease.

	Returns:

	The ID of the reservation, if found.

	Raises:

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If no reservation was found, or multiple were found.

	
chi.lease.get_lease(ref) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Get a lease by its ID or name.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the lease.

	Returns:

	The lease matching the ID or name.

	
chi.lease.get_lease_id(lease_name) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Look up a lease’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the lease.

	Returns:

	The ID of the found lease.

	Raises:

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If the lease could not be found, or if multiple leases were
 found with the same name.

	
chi.lease.get_node_reservation(lease_ref, count=None, resource_properties=None, node_type=None, architecture=None)

	Retrieve a reservation ID for a node reservation.

The reservation ID is useful to have when launching bare metal instances.

	Parameters:

	
	lease_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the lease.

	count (int [https://docs.python.org/3.7/library/functions.html#int]) – An optional count of nodes the desired reservation was
made for. Use this if you have multiple reservations under a lease.

	resource_properties (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – An optional set of resource property constraints
the desired reservation was made under. Use this if you have multiple
reservations under a lease.

	node_type (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – An optional node type the desired reservation was
made for. Use this if you have multiple reservations under a lease.

	architecture (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – An optional node architecture the desired reservation was
made for. Use this if you have multiple reservations under a lease.

	Returns:

	The ID of the reservation, if found.

	Raises:

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If no reservation was found, or multiple were found.

	
chi.lease.get_reserved_floating_ips(lease_ref) → list [https://docs.python.org/3.7/library/stdtypes.html#list][str [https://docs.python.org/3.7/library/stdtypes.html#str]]

	Get a list of Floating IP addresses reserved in a lease.

	Parameters:

	lease_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the lease.

	Returns:

	A list of all reserved Floating IP addresses, if any were reserved.

	
chi.lease.lease_duration(days=1, hours=0)

	Compute the start and end dates for a lease given its desired duration.

When providing both days and hours, the duration is summed. So,
the following would be a lease for one and a half days:

start_date, end_date = lease_duration(days=1, hours=12)

	Parameters:

	
	days (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of days the lease should be for.

	hours (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of hours the lease should be for.

	
chi.lease.wait_for_active(ref)

	Wait for the lease to become active.

This function will wait for 2.5 minutes, which is a somewhat arbitrary
amount of time.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the lease.

	Returns:

	The lease in ACTIVE state.

	Raises:

	TimeoutError [https://docs.python.org/3.7/library/exceptions.html#TimeoutError] – If the lease fails to become active within the timeout.

Object-oriented interface

	
class chi.lease.Lease(**kwargs)

	Creates and manages a lease, optionally with a context manager (with).

with Lease(session, node_type='compute_skylake') as lease:
 instance = lease.create_server()
 ...

When using the context manager, on entering it will wait for the lease
to launch, then on exiting it will delete the lease, which in-turn
also deletes the instances launched with it.

	Parameters:

	
	keystone_session – session object

	sequester (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If the context manager catches that an instance
failed to start, it will not delete the lease, but rather extend it
and rename it with the ID of the instance that failed.

	_no_clean (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Don’t delete the lease at the end of a context
manager

	kwargs – Parameters passed through to
lease_create_nodetype() and in turn
lease_create_args()

	
create_server(*server_args, **server_kwargs)

	Generates instances using the resource of the lease. Arguments
are passed to ccmanage.server.Server and returns same
object.

	
delete()

	Deletes the lease

	
classmethod from_existing(id)

	Attach to an existing lease by ID. When using in conjunction with the
context manager, it will not delete the lease at the end.

	
property ready

	Returns True if the lease has started.

	
refresh()

	Updates the lease data

	
property status

	Refreshes and returns the status of the lease.

	
wait()

	Blocks for up to 150 seconds, waiting for the lease to be ready.
Raises a RuntimeError if it times out.

 chi.server

chi.server

The chi.server module exposes both a functional interface and an
object-oriented interface for interacting with server instances.

Functional interface

Any of the following functions can be directly imported and used individually:

from chi.server import get_server

s = server.get_server('my-server-name')

	
chi.server.associate_floating_ip(server_id, floating_ip_address=None)

	Associate an allocated Floating IP with a server.

If no Floating IP is specified, one will be allocated dynamically.

	Parameters:

	
	server_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID of the server.

	floating_ip_address (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The IPv4 address of the Floating IP to
assign. If specified, this Floating IP must already be allocated
to the project.

	
chi.server.create_server(server_name, reservation_id=None, key_name=None, network_id=None, network_name='sharednet1', nics=[], image_id=None, image_name='CC-Ubuntu20.04', flavor_id=None, flavor_name=None, count=1, hypervisor_hostname=None) → NovaServer | list [https://docs.python.org/3.7/library/stdtypes.html#list][NovaServer]

	Launch a new server instance.

	Parameters:

	
	server_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – A name to give the server.

	reservation_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID of the Blazar reservation that will be
used to select a target host node. It is required to make a
reservation for bare metal server instances.

	key_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – A key pair name to associate with the server. Any user
holding the private key for the key pair will be able to SSH to
the instance as the cc user. Defaults to the key specified
by the “key_name” context variable.

	network_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The network ID to connect the server to. The server
will obtain an IP address on this network when it boots.

	network_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the network to connect the server to.
If network_id is also set, that takes priority.

	nics (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – …

	image_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The image ID to use for the server’s disk image.

	image_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the image to user for the server’s disk
image. If image_id is also set, that takes priority.
(Default DEFAULT_IMAGE.)

	flavor_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The flavor ID to use when launching the server. If not
set, and no flavor_name is set, the first flavor found is used.

	flavor_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the flavor to use when launching the
server. If flavor_id is also set, that takes priority. If not
set, and no flavor_id is set, the first flavor found is used.

	count (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of instances to launch. When launching bare
metal server instances, this number must be less than or equal to
the total number of hosts reserved. (Default 1).

	Returns:

	
	The created server instance. If count was larger than 1, then a
	list of all created instances will be returned instead.

	Raises:

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – if an invalid count is provided.

	
chi.server.delete_server(server_id)

	Delete a server by its ID.

	Parameters:

	server_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID of the server to delete.

	
chi.server.detach_floating_ip(server_id, floating_ip_address)

	Remove an allocated Floating IP from a server by name.

	Parameters:

	
	server_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the server.

	floating_ip_address (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The IPv4 address of the Floating IP to
remove from the server.

	
chi.server.get_flavor(ref) → FlavorAccess [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess]

	Get a flavor by its ID or name.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the flavor.

	Returns:

	The flavor matching the ID or name.

	Raises:

	NotFound – If the flavor could not be found.

	
chi.server.get_flavor_id(name) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Look up a flavor’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the flavor.

	Returns:

	The ID of the found flavor.

	Raises:

	NotFound – If the flavor could not be found.

	
chi.server.get_server(ref) → Server [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server]

	Get a server by its ID.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the server.

	Returns:

	The server matching the ID.

	Raises:

	NotFound – If the server could not be found.

	
chi.server.get_server_id(name) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Look up a server’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the server.

	Returns:

	The ID of the found server.

	Raises:

	NotFound – If the server could not be found.

	
chi.server.list_flavors() → list [https://docs.python.org/3.7/library/stdtypes.html#list][FlavorAccess [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess]]

	Get a list of all available flavors.

	Returns:

	A list of all flavors.

	
chi.server.list_servers(**kwargs) → list [https://docs.python.org/3.7/library/stdtypes.html#list][Server [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server]]

	List all servers under the current project.

	Parameters:

	kwargs – Keyword arguments, which will be passed to
novaclient.v2.servers.list(). For example, to filter by
instance name, provide search_opts={'name': 'my-instance'}

	Returns:

	All servers associated with the current project.

	
chi.server.show_flavor(flavor_id) → FlavorAccess [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess]

	Get a flavor by its ID.

	Parameters:

	flavor_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – the ID of the flavor

	Returns:

	The flavor with the given ID.

	
chi.server.show_flavor_by_name(name) → FlavorAccess [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.flavor_access.html#novaclient.v2.flavor_access.FlavorAccess]

	Get a flavor by its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the flavor.

	Returns:

	The flavor with the given name.

	Raises:

	NotFound – If the flavor could not be found.

	
chi.server.show_server(server_id) → Server [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server]

	Get a server by its ID.

	Parameters:

	server_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – the ID of the server

	Returns:

	The server with the given ID.

	
chi.server.show_server_by_name(name) → Server [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.Server]

	Get a server by its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the server.

	Returns:

	The server with the given name.

	Raises:

	NotFound – If the server could not be found.

	
chi.server.update_keypair(key_name=None, public_key=None) → Keypair [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.keypairs.html#novaclient.v2.keypairs.Keypair]

	Update a key pair’s public key.

Due to how OpenStack Nova works, this requires deleting and re-creating the
key even for public key updates. The key will not be re-created if it
already exists and the fingerprints match.

	Parameters:

	
	key_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the key pair to update. Defaults to value
of the “key_name” context variable.

	public_key (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The public key to update the key pair to reference.
Defaults to the contents of the file specified by the
“keypair_public_key” context variable.

	Returns:

	The updated (or created) key pair.

	
chi.server.wait_for_active(server_id, timeout=1200)

	Wait for the server to go in to the ACTIVE state.

If the server goes in to an ERROR state, this function will terminate. This
is a blocking function.

Note

For bare metal servers, when the server transitions to ACTIVE state, this
actually indicates it has started its final boot. It may still take some
time for the boot to complete and interfaces e.g., SSH to come up.

If you want to wait for a TCP service like SSH, refer to
wait_for_tcp().

	Parameters:

	
	server_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID of the server.

	timeout (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of seconds to wait for before giving up.
Defaults to 20 minutes.

	
chi.server.wait_for_tcp(host, port, timeout=1200, sleep_time=5)

	Wait until a port on a server starts accepting TCP connections.

The implementation is taken from wait_for_tcp_port.py [https://gist.github.com/butla/2d9a4c0f35ea47b7452156c96a4e7b12].

	Parameters:

	
	host (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The host that should be accepting connections. This can
be either a Floating IP or a hostname.

	port (int [https://docs.python.org/3.7/library/functions.html#int]) – Port number.

	timeout (int [https://docs.python.org/3.7/library/functions.html#int]) – How long to wait before raising errors, in seconds.
Defaults to 20 minutes.

	sleep_time (int [https://docs.python.org/3.7/library/functions.html#int]) – How long to wait between each attempt in seconds.
Defaults to 5 seconds.

	Raises:

	TimeoutError [https://docs.python.org/3.7/library/exceptions.html#TimeoutError] – If the port isn’t accepting connection after time
 specified in timeout.

Object-oriented interface

The Server abstraction has been available historically for
those who wish to use something with more of an OOP flavor.

	
class chi.server.Server(id=None, lease=None, key=None, image='CC-Ubuntu20.04', **kwargs)

	A wrapper object referring to a server instance.

This class is helpful if you want to use a more object-oriented programming
approach when building your infrastrucutre. With the Server abstraction,
you can for example do the following:

with Server(lease=my_lease, image=my_image) as server:
 # When entering this block, the server is guaranteed to be
 # in the "ACTIVE" state if it launched successfully.
 server.associate_floating_ip()
 # Interact with the server (via, e.g., SSH), then...
When the block exits, the server will be terminated and deleted

The above example uses a context manager. The class can also be used
without a context manager:

Triggers the launch of the server instance
server = Server(lease=my_lease, image=my_image)
Wait for server to be active
server.wait()
server.associate_floating_ip()
Interact with the server, then...
server.delete()

	
id

	The ID of an existing server instance. Use this if you have
already launched the instance and just want a convenient wrapper
object for it.

	Type:

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
lease

	The Lease the instance will be launched under.

	Type:

	Lease

	
key

	The name of the key pair to associate with the image. This
is only applicable if launching the image; key pairs cannot be
added to a server that has already been launched and wrapped via
the id attribute.

	Type:

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
image

	The name or ID of the disk iage to use.

	Type:

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
name

	A name to give the new instance. (Defaults to an
auto-generated name.)

	Type:

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
net_ids

	A list of network IDs to associate the instance
with. The instance will obtain an IP address on each network
during boot.

Note

For bare metal instances, the number of network IDs cannot
exceed the number of enabled NICs on the bare metal node.

	Type:

	list [https://docs.python.org/3.7/library/stdtypes.html#list][str [https://docs.python.org/3.7/library/stdtypes.html#str]]

	
kwargs

	Additional keyword arguments to pass to Nova’s server
create() [https://docs.openstack.org/python-novaclient/latest/reference/api/novaclient.v2.servers.html#novaclient.v2.servers.ServerManager.create] function.

	
associate_floating_ip()

	Attach a floating IP to this server instance.

	
delete()

	Delete this server instance.

	
disassociate_floating_ip()

	Detach the floating IP attached to this server instance, if any.

	
property error: bool [https://docs.python.org/3.7/library/functions.html#bool]

	Check if the instance is in an error state.

	
property ready: bool [https://docs.python.org/3.7/library/functions.html#bool]

	Check if the instance is marked as active.

	
rebuild(image_ref)

	Rebuild this server instance.

Note

For bare metal instances, this effectively redeploys to the host and
overwrites the local disk.

	
refresh()

	Poll the latest state of the server instance.

	
property status: str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Get the instance status.

	
wait()

	Wait for the server instance to finish launching.

If the server goes into an error state, this function will return early.

 chi.network

chi.network

The chi.network module exposes a functional interface for interacting
with the various networking capabilities of the testbed.

	
chi.network.add_port_to_router(router_id, port_id)

	Add a port to a router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	port_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The port ID.

	
chi.network.add_port_to_router_by_name(router_name, port_name)

	Add a port to a router, referencing the router and port by name.

	Parameters:

	
	router_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router name.

	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The port name.

	
chi.network.add_route_to_router(router_id, cidr, nexthop)

	Add a new route to a router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	cidr (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The destination subnet CIDR for the route.

	nexthop (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The nexthop address for the route.

	
chi.network.add_routes_to_router(router_id, routes)

	Add a set of routes to a router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	routes (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – A list of routes to add. The list is expected
to consist of items with a ‘destination’ and ‘nexthop’ key, e.g.:

[
 {'destination': '10.0.0.0/24', 'nexthop': '10.0.0.1'},
 {'destination': '10.0.1.0/24', 'nexthop': '10.0.1.1'}
]

	
chi.network.add_subnet_to_router(router_id, subnet_id)

	Add a subnet to a router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	subnet_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The subnet ID.

	
chi.network.add_subnet_to_router_by_name(router_name, subnet_name)

	Add a subnet to a router, referencing the router and subnet by name.

	Parameters:

	
	router_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router name.

	subnet_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The subnet name.

	
chi.network.bind_floating_ip(ip_address, port_id=None, fixed_ip_address=None)

	Directly assign a Floating IP to an existing port/address.

Note

If you just want to attach a Floating IP to a server instance, the
chi.server.associate_floating_ip() function is simpler.

	Parameters:

	
	ip_address (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The Floating IP address.

	port_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID of the port to bind to.

	fixed_ip_address (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The address in the port to bind to. This is
only required if the port has multiple IP addresses assigned; by
default the first IP in a port is bound.

	
chi.network.create_network(network_name, of_controller_ip=None, of_controller_port=None, vswitch_name=None, provider='physnet1', port_security_enabled=True) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Create a network.

For an OpenFlow network include the IP and port of an OpenFlow controller
on Chameleon or accessible through the public Internet. Include a virtual
switch name if you plan to add additional private VLANs to this switch.
Additional VLANs can be connected using a dedicated port corresponding to
the VLAN tag and can be conrolled using a valid OpenFlow controller.

	Parameters:

	
	network_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The new network name.

	of_controller_ip (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – the IP of the optional OpenFlow controller.
The IP must be accessible on the public Internet.

	of_controller_port (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – the port of the optional OpenFlow controller.

	vswitch_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The virtual switch to use name.

	provider (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – the provider network to use when specifying stitchable
VLANs (i.e. ExoGENI). Default: ‘physnet1’

	
chi.network.create_port(port_name, network_id, fixed_ips=None, subnet_id=None, ip_address=None, port_security_enabled=True) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Create a new port on a network.

This function has a short-form and a long-form invocation. In the short form,
you can specify subnet_id and ip_address to give the port a single
assignment on a subnet. In the long form you can specify fixed_ips to
define multiple assignments.

	Parameters:

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name to give the new port.

	network_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID of the network that the port will be
connected to.

	fixed_ips (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – A list of IP assignments to give to the port
on various subnets. Each assignment must at minimum have a subnet_id
defined. An optional ip_address can be included on an assignment
to specify the exact IP address to assign. Otherwise, one is chosen
automatically from the available IPs on the subnet. There can be
multiple assignments (i.e., IPs) on a single subnet.

	subnet_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID of the subnet that the port will be allocated
on. The port will be automatically assigned an IP address on this
subnet, unless the ip_address parameter is provided.

Note

This parameter is ignored if fixed_ips is set.

	ip_address (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The IP address to assign the port, if a specific
IP address is desired. By default an IP address is automatically
picked from the target subnet.

Note

This parameter is ignored if fixed_ips is set.

	port_security_enabled (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Whether to enable port security [https://wiki.openstack.org/wiki/Neutron/ML2PortSecurityExtensionDriver].
In general this should be kept on. (Default True).

	Returns:

	The created port representation.

	
chi.network.create_router(router_name, gw_network_name=None) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Create a router, with or without a public gateway.

	Parameters:

	
	router_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The new router name.

	gw_network_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the public gateway requested to
provide subnets connected this router NAT to the Internet.

	Returns:

	The created router representation.

	
chi.network.create_subnet(subnet_name, network_id, cidr='192.168.1.0/24', allocation_pool_start=None, allocation_pool_end=None, gateway_ip=None) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Create a subnet on a network.

	Parameters:

	
	subnet_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name to give the new subnet.

	network_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The network to associate the subnet with ID.

	cidr (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The subnet’s IPv4 CIDR range. (Default 192.168.1.0/24)

	gateway_ip (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The subnet’s gateway address. If not defined,
the first address in the subnet will be automatically chosen as
the gateway.

	Returns:

	The new subnet representation.

	
chi.network.delete_network(network_id)

	Delete the network.

Note

This does not perform a full teardown of the network, including removing
subnets and ports. It will only succeed if the network does not have
any attached entities. See nuke_network() for a more complete
teardown function.

	Parameters:

	network_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The network ID.

	
chi.network.delete_port(port_id)

	Delete the port.

	Parameters:

	port_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The port ID.

	
chi.network.delete_router(router_id)

	Delete the router.

	Parameters:

	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	
chi.network.delete_subnet(subnet_id)

	Delete the subnet.

	Parameters:

	subnet_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The subnet ID.

	
chi.network.get_floating_ip(ip_address) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Get the floating IP representation for an IP address.

	Parameters:

	ip_address (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The IP address of the floating IP.

	Returns:

	The floating IP representation.

	
chi.network.get_free_floating_ip(allocate=True) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Get the first unallocated floating IP available to your project.

	Parameters:

	allocate (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Whether to allocate a new floating IP if there are no
Floating IPs currently free in your project. Defaults to True.

	Returns:

	The free floating IP representation.

	
chi.network.get_network(ref) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Get a network by its name or ID.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the network.

	Returns:

	The network representation.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the network could not be found, or multiple networks
 were returned for the search term.

	
chi.network.get_network_id(name) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Look up a network’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The network name.

	Returns:

	The network’s ID, if found.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the network could not be found, or multiple networks
 were returned for the search term.

	
chi.network.get_port(ref) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Get a port by its name or ID.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the port.

	Returns:

	The port representation.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the port could not be found, or multiple ports
 were returned for the search term.

	
chi.network.get_port_id(name) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Look up a port’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The port name.

	Returns:

	The port’s ID, if found.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the port could not be found, or multiple ports
 were returned for the search term.

	
chi.network.get_router(ref) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Get a router by its name or ID.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the router.

	Returns:

	The router representation.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the router could not be found, or multiple routers
 were returned for the search term.

	
chi.network.get_router_id(name) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Look up a router’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router name.

	Returns:

	The router’s ID, if found.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the router could not be found, or multiple routers
 were returned for the search term.

	
chi.network.get_subnet(ref) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Get a subnet by its name or ID.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the subnet.

	Returns:

	The subnet representation.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the subnet could not be found, or multiple subnets
 were returned for the search term.

	
chi.network.get_subnet_id(name) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Look up a subnet’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The subnet name.

	Returns:

	The subnet’s ID, if found.

	Raises:

	RuntimeError [https://docs.python.org/3.7/library/exceptions.html#RuntimeError] – If the subnet could not be found, or multiple subnets
 were returned for the search term.

	
chi.network.list_floating_ips() → list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]

	List all floating ips associated with the current project.

	Returns:

	A list of all the found floating ips.

	
chi.network.list_networks() → list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]

	List all networks associated with the current project.

	Returns:

	A list of all the found networks.

	
chi.network.list_ports() → list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]

	List all ports associated with the current project.

	Returns:

	A list of all the found ports.

	
chi.network.list_routers() → list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]

	List all routers associated with the current project.

	Returns:

	A list of all the found routers.

	
chi.network.list_subnets() → list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]

	List all subnets associated with the current project.

	Returns:

	A list of all the found subnets.

	
chi.network.nuke_network(network_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str])

	Completely tear down the network.

Cleanly tearing down an OpenStack network representation involves a few
separate steps:

	Detach the network’s subnets from the router.

	Delete the router.

	Delete the subnet(s).

	Delete the network.

This function performs all of those steps for you.

Note

This function will not work well for very advance networks, perhaps
those connected to multiple routers. You should perform your own cleanup
if your network’s subnets are attached to multiple routers.

	Parameters:

	network_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The network name or ID.

	
chi.network.remove_all_routes_from_router(router_id)

	Remove all routes from the router.

	Parameters:

	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	
chi.network.remove_port_from_router(router_id, port_id)

	Remove a port from the router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	port_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The port ID.

	
chi.network.remove_route_from_router(router_id, cidr, nexthop)

	Remove a single route from the router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	cidr (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The destination subnet CIDR for the route.

	nexthop (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The nexthop address for the route.

	
chi.network.remove_routes_from_router(router_id, routes)

	Remove a set of routes from a router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	routes (list [https://docs.python.org/3.7/library/stdtypes.html#list][dict [https://docs.python.org/3.7/library/stdtypes.html#dict]]) – A list of routes to remove. The list is expected
to consist of items with a ‘destination’ and ‘nexthop’ key, e.g.:

[
 {'destination': '10.0.0.0/24', 'nexthop': '10.0.0.1'},
 {'destination': '10.0.1.0/24', 'nexthop': '10.0.1.1'}
]

	
chi.network.remove_subnet_from_router(router_id, subnet_id)

	Remove a subnet from the router.

	Parameters:

	
	router_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The router ID.

	subnet_id (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The subnet ID.

Wizards

There are additionally some functions that tie together several common tasks.

	
class chi.network.wizard

	A collection of “wizard” functions.

These utility functions are very opinionated but can reduce boilerplate.

	
static create_network(name_prefix, of_controller_ip=None, of_controller_port=None, gateway=False)

	Create a network and subnet, and connect the subnet to a new router.

	Parameters:

	
	name_prefix (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The common name prefix for all created entities.

	of_controller_ip (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The OpenFlow controller IP, if using.

	of_controller_port (int [https://docs.python.org/3.7/library/functions.html#int]) – The OpenFlow controller port, if using.

	gateway (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Whether to add a WAN gateway to the router. Routers
with a WAN gateway are able to NAT to the Internet.

	Returns:

	The created network representation.

	
static delete_network(name_prefix)

	Delete a network created via :func:wizard.create_network.

	Parameters:

	name_prefix (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The common name prefix for all created entities.

 chi.image

chi.image

The chi.image module exposes a functional interface for interacting with
disk images.

	
chi.image.get_image(ref)

	Get an image by its ID or name.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the image.

	Returns:

	The image matching the ID or name.

	Raises:

	NotFound – If the image could not be found.

	
chi.image.get_image_id(name)

	Look up an image’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the image.

	Returns:

	The ID of the found image.

	Raises:

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If the image could not be found, or if multiple images
 matched the name.

	
chi.image.list_images()

	List all images under the current project.

	Returns:

	All images associated with the current project.

 chi.container

chi.container

The chi.container module exposes a functional interface for interacting
with application containers.

Important

Currently, only the CHI@Edge site support container operations.

	
chi.container.associate_floating_ip(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str], floating_ip_address=None) → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Assign a Floating IP address to a container.

The container’s first address will be used for the assignment.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	floating_ip_address (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The Floating IP address, which must already
be owned by the requesting project. If not defined, a Floating IP
will be allocated, if there are any available.

	Returns:

	The Floating IP address, if it was bound successfully, else None.

	
chi.container.create_container(name: str [https://docs.python.org/3.7/library/stdtypes.html#str], image: str [https://docs.python.org/3.7/library/stdtypes.html#str] = None, exposed_ports: list [https://docs.python.org/3.7/library/stdtypes.html#list][str [https://docs.python.org/3.7/library/stdtypes.html#str]] = None, reservation_id: str [https://docs.python.org/3.7/library/stdtypes.html#str] = None, start: bool [https://docs.python.org/3.7/library/functions.html#bool] = True, start_timeout: int [https://docs.python.org/3.7/library/functions.html#int] = None, platform_version: int [https://docs.python.org/3.7/library/functions.html#int] = 2, **kwargs) → Container

	Create a container instance.

	Parameters:

	
	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name to give the container.

	image (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The Docker image, with or without tag information. If no
tag is provided, “latest” is assumed.

	device_profiles (list [https://docs.python.org/3.7/library/stdtypes.html#list][str [https://docs.python.org/3.7/library/stdtypes.html#str]]) – An optional list of device profiles to
request be configured on the container when it is created. Edge
devices may have differing sets of supported device profiles, so
it is important to understand which profiles are supported by the
target device for your container.

	environment (dict [https://docs.python.org/3.7/library/stdtypes.html#dict]) – A set of environment variables to pass to the
container.

	exposed_ports (list [https://docs.python.org/3.7/library/stdtypes.html#list][str [https://docs.python.org/3.7/library/stdtypes.html#str]]) – A list of ports to expose on the container.
TCP or UDP can be provided with a slash prefix, e.g., “80/tcp” vs.
“53/udp”. If no protocol is provided, TCP is assumed.

	host (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The Zun host to launch a container on. If not specified,
the host is chosen by Zun.

	runtime (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The container runtime to use. This should only be
overridden when explicitly launching containers onto a host/platform
requiring a separate runtime to, e.g., pass-through GPU devices,
such as the “nvidia” runtime provided by NVIDIA Jetson Nano/TX2.

	start (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Whether to automatically start the container after it
is created. Default True.

	**kwargs – Additional keyword arguments to send to the Zun client’s
container create call.

	
chi.container.destroy_container(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str])

	Delete the container.

This will automatically stop the container if it is currently running.

	Parameters:

	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	
chi.container.download(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str], source: str [https://docs.python.org/3.7/library/stdtypes.html#str], dest: str [https://docs.python.org/3.7/library/stdtypes.html#str])

	Download a file or directory from a running container.

This method requires your running container to include
both the POSIX sh and GNU tar utilities.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	source (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The (container) path of the file or directory.

	dest (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The (local) path to download to.

	
chi.container.execute(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str], command: str [https://docs.python.org/3.7/library/stdtypes.html#str]) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Execute a one-off process inside a running container.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	command (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The command to run.

	Returns:

	A summary of the output of the command, with “output” and “exit_code”.

	
chi.container.get_container(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str]) → Container

	Get a container’s information.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	tag (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – An optional version to tag the container image with. If not
defined, defaults to “latest”.

	Returns:

	The container, if found.

	
chi.container.get_logs(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str], stdout=True, stderr=True)

	Print all logs outputted by the container.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	stdout (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Whether to include stdout logs. Default True.

	stderr (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Whether to include stderr logs. Default True.

	Returns:

	
	A string containing all log output. Log lines will be delimited by
	newline characters.

	
chi.container.list_containers() → list [https://docs.python.org/3.7/library/stdtypes.html#list][Container]

	List all containers owned by this project.

	Returns:

	A list of containers.

	
chi.container.snapshot_container(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str], repository: str [https://docs.python.org/3.7/library/stdtypes.html#str], tag: str [https://docs.python.org/3.7/library/stdtypes.html#str] = 'latest') → str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Create a snapshot of a running container.

This will store the container’s file system in Glance as a new Image.
You can then specify the Image ID in container create requests.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	repository (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name to give the snapshot.

	tag (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – An optional version tag to give the snapshot. Defaults to
“latest”.

	
chi.container.upload(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str], source: str [https://docs.python.org/3.7/library/stdtypes.html#str], dest: str [https://docs.python.org/3.7/library/stdtypes.html#str]) → dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Upload a file or directory to a running container.

This method requires your running container to include
the GNU tar utility.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	source (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The (local) path to the file or directory to upload.

	dest (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The (container) path to upload the file or directory to.

	
chi.container.wait_for_active(container_ref: str [https://docs.python.org/3.7/library/stdtypes.html#str], timeout: int [https://docs.python.org/3.7/library/functions.html#int] = 120) → Container

	Wait for a container to transition to the running state.

	Parameters:

	
	container_ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name or ID of the container.

	timeout (int [https://docs.python.org/3.7/library/functions.html#int]) – How long to wait before issuing a TimeoutError.

	Raises:

	TimeoutError [https://docs.python.org/3.7/library/exceptions.html#TimeoutError] – if the timeout was reached before the container started.

	Returns:

	The container representation.

 chi.share

chi.share

The chi.share module exposes a functional interface for interacting
with shares of the testbed.

	
chi.share.create_share(size, name=None, description=None, metadata=None, is_public=False)

	Create a share.

	Parameters:

	
	size (int [https://docs.python.org/3.7/library/functions.html#int]) – size in GiB.

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – name of new share.

	description (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – description of a share.

	is_public (bool [https://docs.python.org/3.7/library/functions.html#bool]) – whether to set share as public or not.

	Returns:

	The created share.

	
chi.share.delete_share(share)

	Delete a share.

	Parameters:

	share – either share object or text with its ID.

	
chi.share.extend_share(share, new_size)

	Extend the size of the specific share.

	Parameters:

	
	share – either share object or text with its ID.

	new_size – desired size to extend share to.

	
chi.share.get_access_rules(share)

	Get access list to a share.

	Parameters:

	share – either share object or text with its ID.

	Returns:

	A list of access rules.

	
chi.share.get_share(ref)

	Get a share by its ID or name.

	Parameters:

	ref (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID or name of the share.

	Returns:

	The share matching the ID or name.

	Raises:

	NotFound – If the share could not be found.

	
chi.share.get_share_id(name)

	Look up a share’s ID from its name.

	Parameters:

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The name of the share.

	Returns:

	The ID of the found share.

	Raises:

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If the share could not be found, or if multiple shares
 matched the name.

	
chi.share.list_shares()

	List all shares under the current project.

	Returns:

	All shares associated with the current project.

	
chi.share.shrink_share(share, new_size)

	Shrink the size of the specific share.

	Parameters:

	
	share – either share object or text with its ID.

	new_size – desired size to shrink share to.

 chi.ssh

chi.ssh

The chi.ssh module allows you to create a remote connection to your instance.

	
class chi.ssh.Remote(ip=None, server=None, user='cc', **kwargs)

	Wrapper for Fabric Connection [https://docs.fabfile.org/en/latest/api/connection.html#fabric.connection.Connection]

 Launching a bare metal instance

[image: ../_images/2974a02012c1bbd8b039ef1646cbd6ec133e163f.svg]
 [https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/notebooks/baremetal.ipynb&ephemeral=true]

 Launching a container

[image: ../_images/2974a02012c1bbd8b039ef1646cbd6ec133e163f.svg]
 [https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/notebooks/container.ipynb&ephemeral=true]

 Making a reservation

[image: ../_images/2974a02012c1bbd8b039ef1646cbd6ec133e163f.svg]
 [https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/notebooks/reservations.ipynb&ephemeral=true]

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chi	

 	
 	
 chi.container	

 	
 	
 chi.image	

 	
 	
 chi.lease	

 	
 	
 chi.network	

 	
 	
 chi.server	

 	
 	
 chi.share	

 	
 	
 chi.ssh	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | W

A

 	
 	add_device_reservation() (in module chi.lease)

 	add_fip_reservation() (in module chi.lease)

 	add_network_reservation() (in module chi.lease)

 	add_node_reservation() (in module chi.lease)

 	add_port_to_router() (in module chi.network)

 	add_port_to_router_by_name() (in module chi.network)

 	
 	add_route_to_router() (in module chi.network)

 	add_routes_to_router() (in module chi.network)

 	add_subnet_to_router() (in module chi.network)

 	add_subnet_to_router_by_name() (in module chi.network)

 	associate_floating_ip() (chi.server.Server method)

 	(in module chi.container)

 	(in module chi.server)

B

 	
 	bind_floating_ip() (in module chi.network)

 	
 	blazar() (in module chi)

C

 	
 	
 chi

 	module

 	
 chi.container

 	module

 	
 chi.image

 	module

 	
 chi.lease

 	module

 	
 chi.network

 	module

 	
 chi.server

 	module

 	
 chi.share

 	module

 	
 	
 chi.ssh

 	module

 	cinder() (in module chi)

 	connection() (in module chi)

 	create_container() (in module chi.container)

 	create_lease() (in module chi.lease)

 	create_network() (chi.network.wizard static method)

 	(in module chi.network)

 	create_port() (in module chi.network)

 	create_router() (in module chi.network)

 	create_server() (chi.lease.Lease method)

 	(in module chi.server)

 	create_share() (in module chi.share)

 	create_subnet() (in module chi.network)

D

 	
 	delete() (chi.lease.Lease method)

 	(chi.server.Server method)

 	delete_lease() (in module chi.lease)

 	delete_network() (chi.network.wizard static method)

 	(in module chi.network)

 	delete_port() (in module chi.network)

 	delete_router() (in module chi.network)

 	
 	delete_server() (in module chi.server)

 	delete_share() (in module chi.share)

 	delete_subnet() (in module chi.network)

 	destroy_container() (in module chi.container)

 	detach_floating_ip() (in module chi.server)

 	disassociate_floating_ip() (chi.server.Server method)

 	download() (in module chi.container)

E

 	
 	error (chi.server.Server property)

 	
 	execute() (in module chi.container)

 	extend_share() (in module chi.share)

F

 	
 	from_existing() (chi.lease.Lease class method)

G

 	
 	get() (in module chi)

 	get_access_rules() (in module chi.share)

 	get_container() (in module chi.container)

 	get_device_reservation() (in module chi.lease)

 	get_flavor() (in module chi.server)

 	get_flavor_id() (in module chi.server)

 	get_floating_ip() (in module chi.network)

 	get_free_floating_ip() (in module chi.network)

 	get_image() (in module chi.image)

 	get_image_id() (in module chi.image)

 	get_lease() (in module chi.lease)

 	get_lease_id() (in module chi.lease)

 	get_logs() (in module chi.container)

 	get_network() (in module chi.network)

 	
 	get_network_id() (in module chi.network)

 	get_node_reservation() (in module chi.lease)

 	get_port() (in module chi.network)

 	get_port_id() (in module chi.network)

 	get_reserved_floating_ips() (in module chi.lease)

 	get_router() (in module chi.network)

 	get_router_id() (in module chi.network)

 	get_server() (in module chi.server)

 	get_server_id() (in module chi.server)

 	get_share() (in module chi.share)

 	get_share_id() (in module chi.share)

 	get_subnet() (in module chi.network)

 	get_subnet_id() (in module chi.network)

 	glance() (in module chi)

 	gnocchi() (in module chi)

I

 	
 	id (chi.server.Server attribute)

 	
 	image (chi.server.Server attribute)

 	ironic() (in module chi)

K

 	
 	key (chi.server.Server attribute)

 	
 	keystone() (in module chi)

 	kwargs (chi.server.Server attribute)

L

 	
 	lease (chi.server.Server attribute)

 	Lease (class in chi.lease)

 	lease_duration() (in module chi.lease)

 	list_containers() (in module chi.container)

 	list_flavors() (in module chi.server)

 	list_floating_ips() (in module chi.network)

 	
 	list_images() (in module chi.image)

 	list_networks() (in module chi.network)

 	list_ports() (in module chi.network)

 	list_routers() (in module chi.network)

 	list_servers() (in module chi.server)

 	list_shares() (in module chi.share)

 	list_subnets() (in module chi.network)

M

 	
 	manila() (in module chi)

 	
 module

 	chi

 	chi.container

 	chi.image

 	chi.lease

 	chi.network

 	chi.server

 	chi.share

 	chi.ssh

N

 	
 	name (chi.server.Server attribute)

 	net_ids (chi.server.Server attribute)

 	
 	neutron() (in module chi)

 	nova() (in module chi)

 	nuke_network() (in module chi.network)

P

 	
 	params() (in module chi)

R

 	
 	ready (chi.lease.Lease property)

 	(chi.server.Server property)

 	rebuild() (chi.server.Server method)

 	refresh() (chi.lease.Lease method)

 	(chi.server.Server method)

 	Remote (class in chi.ssh)

 	
 	remove_all_routes_from_router() (in module chi.network)

 	remove_port_from_router() (in module chi.network)

 	remove_route_from_router() (in module chi.network)

 	remove_routes_from_router() (in module chi.network)

 	remove_subnet_from_router() (in module chi.network)

 	reset() (in module chi)

S

 	
 	Server (class in chi.server)

 	session() (in module chi)

 	set() (in module chi)

 	show_flavor() (in module chi.server)

 	show_flavor_by_name() (in module chi.server)

 	
 	show_server() (in module chi.server)

 	show_server_by_name() (in module chi.server)

 	shrink_share() (in module chi.share)

 	snapshot_container() (in module chi.container)

 	status (chi.lease.Lease property)

 	(chi.server.Server property)

U

 	
 	update_keypair() (in module chi.server)

 	
 	upload() (in module chi.container)

 	use_site() (in module chi)

W

 	
 	wait() (chi.lease.Lease method)

 	(chi.server.Server method)

 	wait_for_active() (in module chi.container)

 	(in module chi.lease)

 	(in module chi.server)

 	
 	wait_for_tcp() (in module chi.server)

 	wizard (class in chi.network)

 Launching a bare metal instance

[image: ../../_images/2974a02012c1bbd8b039ef1646cbd6ec133e163f.svg]
 [https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/_extras/notebooks/baremetal.ipynb&ephemeral=true]

 Launching a container

[image: ../../_images/2974a02012c1bbd8b039ef1646cbd6ec133e163f.svg]
 [https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/_extras/notebooks/container.ipynb&ephemeral=true]

 Making a reservation

[image: ../../_images/2974a02012c1bbd8b039ef1646cbd6ec133e163f.svg]
 [https://jupyter.chameleoncloud.org/hub/import?deposition_repo=http&deposition_id=https://python-chi.readthedocs.io/en/latest/_extras/notebooks/reservations.ipynb&ephemeral=true]_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Chameleon Cloud Python API

 		
 chi

 		
 blazar()

 		
 cinder()

 		
 connection()

 		
 get()

 		
 glance()

 		
 gnocchi()

 		
 ironic()

 		
 keystone()

 		
 manila()

 		
 neutron()

 		
 nova()

 		
 params()

 		
 reset()

 		
 session()

 		
 set()

 		
 use_site()

 		
 chi.lease

 		
 Functional interface

 		
 add_device_reservation()

 		
 add_fip_reservation()

 		
 add_network_reservation()

 		
 add_node_reservation()

 		
 create_lease()

 		
 delete_lease()

 		
 get_device_reservation()

 		
 get_lease()

 		
 get_lease_id()

 		
 get_node_reservation()

 		
 get_reserved_floating_ips()

 		
 lease_duration()

 		
 wait_for_active()

 		
 Object-oriented interface

 		
 Lease

 		
 chi.server

 		
 Functional interface

 		
 associate_floating_ip()

 		
 create_server()

 		
 delete_server()

 		
 detach_floating_ip()

 		
 get_flavor()

 		
 get_flavor_id()

 		
 get_server()

 		
 get_server_id()

 		
 list_flavors()

 		
 list_servers()

 		
 show_flavor()

 		
 show_flavor_by_name()

 		
 show_server()

 		
 show_server_by_name()

 		
 update_keypair()

 		
 wait_for_active()

 		
 wait_for_tcp()

 		
 Object-oriented interface

 		
 Server

 		
 chi.network

 		
 add_port_to_router()

 		
 add_port_to_router_by_name()

 		
 add_route_to_router()

 		
 add_routes_to_router()

 		
 add_subnet_to_router()

 		
 add_subnet_to_router_by_name()

 		
 bind_floating_ip()

 		
 create_network()

 		
 create_port()

 		
 create_router()

 		
 create_subnet()

 		
 delete_network()

 		
 delete_port()

 		
 delete_router()

 		
 delete_subnet()

 		
 get_floating_ip()

 		
 get_free_floating_ip()

 		
 get_network()

 		
 get_network_id()

 		
 get_port()

 		
 get_port_id()

 		
 get_router()

 		
 get_router_id()

 		
 get_subnet()

 		
 get_subnet_id()

 		
 list_floating_ips()

 		
 list_networks()

 		
 list_ports()

 		
 list_routers()

 		
 list_subnets()

 		
 nuke_network()

 		
 remove_all_routes_from_router()

 		
 remove_port_from_router()

 		
 remove_route_from_router()

 		
 remove_routes_from_router()

 		
 remove_subnet_from_router()

 		
 Wizards

 		
 wizard

 		
 chi.image

 		
 get_image()

 		
 get_image_id()

 		
 list_images()

 		
 chi.container

 		
 associate_floating_ip()

 		
 create_container()

 		
 destroy_container()

 		
 download()

 		
 execute()

 		
 get_container()

 		
 get_logs()

 		
 list_containers()

 		
 snapshot_container()

 		
 upload()

 		
 wait_for_active()

 		
 chi.share

 		
 create_share()

 		
 delete_share()

 		
 extend_share()

 		
 get_access_rules()

 		
 get_share()

 		
 get_share_id()

 		
 list_shares()

 		
 shrink_share()

 		
 chi.ssh

 		
 Remote

 		
 Launching a bare metal instance

 		
 Launch a bare metal instance.

 		
 Wait for a serverâ��s port to come up before proceeding.

 		
 Launching a container

 		
 Launch a container.

